Skip to main content
Log in

From Amateur to Professional: A Neuro-cognitive Model of Categories and Expert Development

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

The ability to group perceptual objects into functionally relevant categories is vital to our comprehension of the world. Such categorisation aids in how we search for objects in familiar scenes and how we identify an object and its likely uses despite never having seen that specific object before. The systems that mediate this process are only now coming to be understood through considerable research efforts combining neurological, psychological and behavioural studies. What is much less well understood are the differences between the categories, how they are formed and how they are used by experts and non-experts in a complex task that can take decades to master. In a quite different direction to previous studies, this work infers the different categorical structures that might be used by amateurs and professionals in the oriental game of Go. This is achieved by using a newly developed combination of artificial neural networks (Self-organising Maps) and perceptual inference to show that categories of strategic scenes can be learned while playing games using a model of ‘conditional perceptual learning’. Applying this technique to two databases of games, one of amateurs and one of professionals, shows that a structural hierarchy of scene information develops that can be readily incorporated into traditional psychological models of decisions and readily implemented in computational systems. The results are discussed in terms of the heuristics and biases literature, emphasising where the significant similarities and differences lie between this work and previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. A full set of rules and a complete description can be found at http://senseis.xmp.net/.

  2. From the KGS Go server: http://www.gokgs.com.

  3. Taken from the commercial GoGod database, Winter 2009 version: http://www.gogod.co.uk.

  4. The unique function both finds the unique vectors in S a and S p (and thereby generates \(S^{\tilde{a}}\) and \(S^{\tilde{p}}\)) and also sorts them in ascending order.

References

  • Afraz, S. R., Kiani, R., & Esteky, H. (2006). Microstimulation of inferotemporal cortex influences face categorization. Nature, 442(7103), 692–695.

    Article  Google Scholar 

  • Alecu, L., Frezza-Buet, H., & Alexandre, F. (2011). Can self-organisation emerge through dynamic neural fields computation? Connection Science, 23(1), 1–31.

    Article  Google Scholar 

  • Atherton, M., Zhuang, J., Bart, W. M., Hu, X., & He, S. (2000). A functional magnetic resonance imaging study of chess expertise. In Poster session presented at the annual meeting of the Cognitive Neuroscience Society, San Francisco.

  • Atherton, M., Zhuang, J., Bart, W. M., Hu, X., & He, S. (2003). A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research, 16(1), 26–31.

    Article  Google Scholar 

  • Bejjanki, V. R., Beck, J. M., Lu, Z. L., & Pouget, A. (2011). Perceptual learning as improved probabilistic inference in early sensory areas. Nature Neuroscience, 14(5), 642–648.

    Article  Google Scholar 

  • Benner, P., & Tanner, C. (1987). How expert nurses use intuition. The American Journal of Nursing, 87(1), 23.

    Google Scholar 

  • Bilalić, M., McLeod, P., & Gobet, F. (2007). Does chess need intelligence?a study with young chess players. Intelligence, 35(5), 457–470.

    Article  Google Scholar 

  • Bilalić, M., McLeod, P., & Gobet, F. (2008). Expert and “novice” problem solving strategies in chess: Sixty years of citing De Groot (1946). Think Reasoning, 14(4), 395–408.

    Article  Google Scholar 

  • Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology 32(4), 699.

    Article  Google Scholar 

  • Campitelli, G., & Gobet, F. (2004). Adaptive expert decision making: Skilled chessplayers search more and deeper. Journal of the International Computer Games Association, 27(4).

  • Cavanagh, P. (2011). Visual cognition. Vision Research, 51(13), 1538–1551.

    Article  Google Scholar 

  • Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory & Cognition, 29(8), 1146–1152.

    Article  Google Scholar 

  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81.

    Article  Google Scholar 

  • Chassy, P., & Gobet, F. (2011). A hypothesis about the biological basis of expert intuition. Review of General Psychology, 15, 198–212.

    Article  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.

    Article  Google Scholar 

  • Cottrell, M., & Verleysen, M. (2006). Advances in self-organizing maps. Neural Networks, 19(6), 721–722.

    Google Scholar 

  • De Groot, A. D., Gobet, F., & Jongman, R. W. (1996). Perception and memory in chess: Studies in the heuristics of the professional eye. The Netherlands: Van Gorcum & Co.

    Google Scholar 

  • Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine, 15(11), 988–994.

    Article  Google Scholar 

  • Ericsson, K. A., Prietula, M. J., & Cokely, E. T. (2007). The making of an expert. Harvard Business Review, 85(7/8), 114.

    Google Scholar 

  • Fahle, M. (2002). Perceptual learning. Encyclopedia of cognitive science. New York: Wiley.

    Google Scholar 

  • Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Science, 14(3), 119–130.

    Article  Google Scholar 

  • Garrigan, P., & Kellman, P. J. (2008). Perceptual learning depends on perceptual constancy. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2248.

    Article  Google Scholar 

  • Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3(1), 35–44.

    Article  Google Scholar 

  • Gobet, F., & Simon, H. A. (1996a). Recall of random and distorted chess positions: Implications for the theory of expertise. Memory & cognition, 24(4), 493–503.

    Article  Google Scholar 

  • Gobet, F., & Simon, H. A. (1996b). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31(1), 1–40.

    Article  Google Scholar 

  • Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., et al. (2001). Chunking mechanisms in human learning. Trends in Cognitive Science, 5(6), 236–243.

    Article  Google Scholar 

  • Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49(1), 585–612.

    Article  Google Scholar 

  • Grossberg, S. (1994). Letter to the editor: Physiological interpretation of the self-organizing map algorithm. CAS/CNS Technical Report Series, (026).

  • Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: A two-stage framework. Brain Cognition, 79(3), 221–244.

    Article  Google Scholar 

  • Hamamé, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: Electrophysiological evidence for a two-stage process. PloS One, 6(4), e19221.

    Article  Google Scholar 

  • Harré, M., & Snyder, A. (Eds.). (2011). Intuitive expertise and perceptual templates. Minds and Machines, 22, 167–182. doi:10.1007/s11023-011-9264-9

  • Harré, M. S., Bossomaier, T., Gillett, A., & Snyder, A. (2011a). The aggregate complexity of decisions in the game of Go. The European Physical Journal B, 80(4), 555–563.

    Article  Google Scholar 

  • Harré, M., Bossomaier, T., & Snyder, A. (Eds.). (2011b). The development of human expertise in a complex environment. Minds and Machines, 21, 449–464. doi:10.1007/s11023-011-9247-x

  • Harré, M., Bossomaier, T., & Snyder, A. (2012). The perceptual cues that reshape expert reasoning. Scientific Reports, 2, 502.

    Google Scholar 

  • Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467–479.

    Article  Google Scholar 

  • Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to disagree. American Psychologist, 64(6), 515.

    Article  Google Scholar 

  • Kellman, M. (2011). The heuristics debate. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Klein, G. A. (1999). Sources of power: How people make decisions. New York: The MIT Press.

    Google Scholar 

  • Klein, G., Calderwood, R., & Clinton-Cirocco, A. (2010). Rapid decision making on the fire ground: The original study plus a postscript. Journal of Cognitive Engineering and Decision Making, 4(3), 186–209.

    Article  Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1993). Physiological interpretation of the self-organizing map algorithm. Neural Networks, 6(7), 895–905.

    Google Scholar 

  • Kohonen, T., & Hari, R. (1999). Where the abstract feature maps of the brain might come from. Trends in Neurosciences, 22(3), 135–139.

    Article  Google Scholar 

  • Kourtzi, Z. (2010). Visual learning for perceptual and categorical decisions in the human brain. Vision Research, 50(4), 433–440.

    Article  Google Scholar 

  • Lee, B., Park, J. Y., Jung, W. H., Kim, H. S., Oh, J. S., Choi, C. H., et al. (2010). White matter neuroplastic changes in long-term trained players of the game of “Baduk” (GO): A voxel-based diffusion-tensor imaging study. Neuroimage, 52(1), 9–19.

    Article  Google Scholar 

  • Ma, W. J., Navalpakkam, V., Beck, J. M., van den Berg, R., & Pouget, A. (2011). Behavior and neural basis of near-optimal visual search. Nature Neuroscience, 14(6), 783–790.

    Article  Google Scholar 

  • Masunaga, H., Kawashima, R., Horn, J. L., Sassa, Y., & Sekiguchi, A. (2008). Neural substrates of the topology test to measure fluid reasoning: An fmri study. Intelligence, 36(6), 607–615.

    Article  Google Scholar 

  • Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383.

    Article  Google Scholar 

  • Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231.

    Article  Google Scholar 

  • Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115(1), 39.

    Article  Google Scholar 

  • Oliva, A. (2005). Gist of the scene. Neurobiology of Attention, 251–256.

  • Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research , 155, 23–36.

    Article  Google Scholar 

  • Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in Cognitive Sciences, 11(12), 520–527.

    Article  Google Scholar 

  • Palmeri, T. J., & Gauthier, I. (2004). Visual object understanding. Nature Reviews Neuroscience, 5(4), 291–303.

    Article  Google Scholar 

  • Palmeri, T. J., Wong, A. C. N., & Gauthier, I. (2004). Computational approaches to the development of perceptual expertise. Trends in Cognitive Sciences, 8(8), 378–386.

    Article  Google Scholar 

  • Pizzi, R., Cino, G., Gelain, F., Rossetti, D., & Vescovi, A. (2007). Learning in human neural networks on microelectrode arrays. BioSystems, 88(1-2), 1–15.

  • Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12(1), 48–55.

    Article  Google Scholar 

  • Salzman, C. D., & Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264(5156), 231.

    Google Scholar 

  • Sasaki, Y., Nanez, J. E., & Watanabe, T. (2009). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11(1), 53–60.

    Article  Google Scholar 

  • Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33, 203–219.

    Article  Google Scholar 

  • Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space. Psychometrika, 22(4), 325–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 1317–1323.

    MathSciNet  MATH  Google Scholar 

  • Simon, H. A. (1992). What is an explanation of behavior? Psychological Science, 3(3), 150.

    Article  Google Scholar 

  • Tetlock, P. (2005). Expert political judgment: How good is it? How can we know? New Jersey: Princeton University Press.

  • Thibodeau, P. H., & Boroditsky, L. (2011). Metaphors we think with: The role of metaphor in reasoning. PloS One, 6(2), e16782.

    Article  Google Scholar 

  • Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766.

    Article  Google Scholar 

  • Tromp, J., A., & Farnebäck, G. (2007). Combinatorics of Go. Computers and Games, 4630, 84–99.

  • Vesanto, J. (1999). Som-based data visualization methods. Intelligent Data Analysis, 3(2), 111–126.

    Article  MATH  Google Scholar 

  • Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., Team, S. O. M. T., & Oy, L. (2000). Som toolbox for matlab. Helsinki: Techn. Ber., Helsinki University of Technology.

    Google Scholar 

  • Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009). Natural scene categories revealed in distributed patterns of activity in the human brain. Journal of Neuroscience, 29(34), 10573–10581.

    Article  Google Scholar 

  • Wiemer, J. C. (2003). The time-organized map algorithm: Extending the self-organizing map to spatiotemporal signals. Neural Computation, 15(5), 1143–1171.

    Article  MATH  Google Scholar 

  • Zhao, X., Li, P., & Kohonen, T. (2011). Contextual self-organizing map: Software for constructing semantic representations. Behavior Research Methods, 43(1), 77–88.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by US Airforce Grant AOARD 104116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Harré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harré, M.S. From Amateur to Professional: A Neuro-cognitive Model of Categories and Expert Development. Minds & Machines 23, 443–472 (2013). https://doi.org/10.1007/s11023-013-9305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-013-9305-7

Keywords