Abstract
In this paper we defend structural representations, more specifically neural structural representation. We are not alone in this, many are currently engaged in this endeavor. The direction we take, however, diverges from the main road, a road paved by the mathematical theory of measure that, in the 1970s, established homomorphism as the way to map empirical domains of things in the world to the codomain of numbers. By adopting the mind as codomain, this mapping became a boon for all those convinced that a representation system should bear similarities with what was being represented, but struggled to find a precise account of what such similarities mean. The euforia was brief, however, and soon homomorphism revealed itself to be affected by serious weaknesses, the primary one being that it included systems embarrassingly alien to representations. We find that the defense attempts that have followed, adopt strategies that share a common format: valid structural representations come as “homomorphism plus X”, with various “X”, provided in descriptive format only. Our alternative direction stems from the observation of the overlooked departure from homomorphism as used in the theory of measure and its later use in mental representations. In the former case, the codomain or the realm of numbers, is the most suited for developing theorems detailing the existence and uniqueness of homomorphism for a wide range of empirical domains. In the latter case, the codomain is the realm of the mind, possibly more vague and more ill-defined than the empirical domain itself. The time is ripe for articulating the mapping between represented domains and the mind in formal terms, by exploiting what is currently known about coding mechanisms in the brain. We provide a sketch of a possible development in this direction, one that adopts the theory of neural population coding as codomain. We will show that our framework is not only not in disagreement with the “plus X” proposals, but can lead to natural derivation of several of the “X”.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
We thank an anonymous reviewer for offering this insight, our counterexample is a slight modification of his own.
References
Abbott, L. F., Rolls, E., & Tovee, M. J. (1996). Representational capacity of face coding in monkeys. Cerebral Cortex, 6, 498–505.
Bartels, A. (2006). Defending the structural concept of representation. Theoria, 55, 7–19.
Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–557.
Bednar, J. A. (2009). Topographica: Building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components. Frontiers in Neuroinformatics, 3, 8.
Bednar, J. A. (2012). Building a mechanistic model of the development and function of the primary visual cortex. Journal of Physiology—Paris, 106, 194–211.
Bermúdez-Rattoni, F. (Ed.) (2007). Neural plasticity and memory: From genes to brain imaging. Boca Raton, FL: CRC Press.
Bernstein, L. E., & Liebenthal, E. (2014). Neural pathways for visual speech perception. Frontiers in Neuroscience, 8, 386.
Blahut, R. E. (1987). Principles and practice of information theory. Reading, MA: Addison Wesley.
Brooks, R. A. (1991). Intelligence without representation. In J. Haugeland (Ed.), Mind Design II (2nd ed., pp. 395–420). Cambridge, MA: MIT Press.
Brunel, N., & Nadal, J. P. (1998). Mutual information, fisher information, and population coding. Neural Computation, 10, 1731–1757.
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.
Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C. R., McGuire, P. K., et al. (1997). Activation of auditory cortex during silent lipreading. Science, 276, 593–596.
Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In S. Laurence & E. Margolis (Eds.), The conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT Press.
Cerreira-Perpiñán, M., & Goodhill, G. J. (2004). Influence of lateral connections on the structure of cortical maps. Journal of Neurophysiology, 92, 2947–2959.
Chalmers, D. (2011). A computational foundation for the study of cognition. Journal of Consciousness Studies, 12, 323–357.
Chemero, A. (2000). Anti-representationalism and the dynamical stance. Philosophy of Science, 67, 625–647.
Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17, 1114–1122.
Church, A. (1941). The Calculi of Lambda Conversion. Princeton, NJ: Princeton University Press.
Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.
Churchland, P. S., & Sejnowski, T. (1994). The computational brain. Cambridge, MA: MIT Press.
Churchland, P. S., & Sejnowski, T. J. (1990). Neural representation and neural computation. Philosophical Perspectives, 4, 343–382.
Clark, A. (2001). Reasons, robots and the extended mind. Minds and Language, 16, 121–145.
Copeland, J. B., Posy, C. J., & Shagrir, O. (Eds.). (2013). Computability: Turing, gödel, church, and beyond. Cambridge, MA: MIT Press.
Cummins, R. (1989). Meaning and mental representation. Cambridge, MA: MIT Press.
Dretske, F. I. (1981). Knowledge and the flow of Information. Cambridge, MA: MIT Press.
Falmagne, J. C. (1980). A probabilistic theory of extensive measurement. Philosophy of Science, 47, 277–296.
Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.
Fitzpatrick, D. C., Batra, R., Stanford, T. R., & Kuwada, S. (1997). A neuronal population code for sound localization. Nature, 388, 871–874.
Fodor, J. (1981). Representations: Philosofical essay on the foundation of cognitive science. Cambridge, MA: MIT Press.
Fodor, J. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. Cambridge, MA: MIT Press.
Fodor, J. (1990). A theory of content and other essays. Cambridge: Cambridge University Press.
Fresco, N. (2014). Physical computation and cognitive science. Berlin: Springer.
Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: High dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 66–74.
Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.
Gallistel, C. R., & King, A. P. (2010). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Wiley.
Ganter, B., & Wille, R. (1999). Formal concept analysis: Mathematical foundations. Berlin: Springer.
van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Science, 21, 615–665.
Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.
Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32, 337–355.
Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.
Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. Journal of Neuroscience, 14, 2545–2568.
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Science, 27, 377–442.
Hartmanis, J., & Stearns, R. E. (1965). On the computational complexity of algorithms. Transaction of American Mathematical Society, 117, 285–306.
Haugeland, J. (1991). Representational genera. In W. Ramsey, S. P. Stich, & D. E. Rumelhart (Eds.), Philosophy and connectionist theory (pp. 61–89). Mahwah, NJ: Lawrence Erlbaum Associates.
Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (1st ed., pp. 77–109). Cambridge: MIT Press.
Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge, MA: MIT Press.
Isaac, A. M. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy, 91, 683–704.
Johnson, D. S., & Papadimitriou, C. H. (1985). Computational complexity. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, & D. B. Shmoys (Eds.), The travelling salesman problem: A guided tour of combinatorial optimization (pp. 37–85). New York: New York.
Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge: Cambridge University Press.
Kaplan, D. M., & Craver, C. F. (2011). Towards a mechanistic philosophy of neuroscience. In S. French & J. Saatsi (Eds.), Continuum companion to the philosophy of science (pp. 268–292). London: Continuum Press.
Kolb, B. (1995). Brain plasticity and behavior. Mahwah, NJ: Lawrence Erlbaum Associates.
Krantz, D., Luce, D., Suppes, P., & Tversky, A. (1971). Foundations of measurement—Volume I additive and polynomial representations. New York: Academic Press.
Kripke, S. A. (1972). Naming and necessity. In D. Davidson & G. H. Harman (Eds.), Semantics of natural language (pp. 253–355). Dordrecht, NL: Reidel Publishing Company.
Lehky, S. R., & Tanaka, K. (2016). Neural representation for object recognition in inferotemporal cortex. Current Opinion in Neurobiology, 37, 23–35.
Lehky, S. R., Kiani, R., Esteky, H., & Tanaka, K. (2014). Dimensionality of object representations in monkey inferotemporal cortex. Neural Computation, 26, 2135–2162.
Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8, 531–543.
Luce, D., Krantz, D., Suppes, P., & Tversky, A. (1990). Foundations of measurement—Volume III representation, axiomatization, and invariance. New York: Academic Press.
Malt, B. C. (2013). Context sensitivity and insensitivity in object naming. Language and Cognition, 5, 81–97.
McLendon, H. J. (1955). Uses of similarity of structure in contemporary philosophy. Mind, 64, 79–95.
Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology, 100, 1407–1419.
Miikkulainen, R., Bednar, J. A., Choe, Y., & Sirosh, J. (1997). Self-organization, plasticity, and low-level visual phenomena in a laterally connected map model of the primary visual cortex. In R. L. Goldstone, P. G. Schyns, & D. L. Medin (Eds.), Psychology of Learning and Motivation (Vol. 36, pp. 257–308). New York: Academic Press.
Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. New York: Springer.
Miłkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.
Miłkowski, M. (2016). Function and causal relevance of content. New Ideas in Psychology, 40, 94–102.
Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press.
Millikan, R. G. (1989). Biosemantic. Journal of Philosophy, 86, 242–265.
Miura, K., Mainen, Z. F., & Uchida, N. (2012). Odor representations in olfactory cortex: Distributed rate coding and decorrelated population activity. Neuron, 74, 1087–1098.
Montague, R. (1974). In R. H. Thomason (Ed.), Formal philosophy: Selected papers of richard montague. New Haven (CO): Yale University Press.
Morgan, A. (2014). Representations gone mental. Synthese, 191, 213–244.
Murphy, G. L. (2002). The big book of concepts. Cambridge: Cambridge University Press.
Nayar, S., & Murase, H. (1995). Visual learning and recognition of 3-d object by appearence. International Journal of Computer Vision, 14, 5–24.
Newman, M. H. A. (1928). Mr. Russell’s “causal theory of perception”. Mind, 37, 137–148.
O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezak (Eds.), Representation in mind—New approaches to mental representation. Amsterdam: Elsevier.
Olshausen, B. A., & Field, D. J. (1996). Natural image statistics and efficient coding. Network: Computation in Neural Systems, 7, 333–339.
Pasupathy, A., & Connor, C. E. (2002). Population coding of shape in area v4. Nature Neuroscience, 5, 1332–1338.
Petersen, W. (2007). Representation of concepts as frames. In J. Škilters (Ed.), Complex cognition and qualitative science: A legacy of Oswald Külpe (pp. 151–170). Riga: Latvijas Universitate.
Piccinini, G. (2008). Computation without representation. Philosophical studies, 137, 205–241.
Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.
Prinz, J. (2002). Furnishing the mind—Concepts and their perceptual basis. Cambridge, MA: MIT Press.
Priss, U. (2006). Formal concept analysis in information science. Annual Review of Information Science and Technology, 40, 521–543.
Quian Quiroga, R., & Panzeri, S. (Eds.) (2013). Principles of neural coding. Boca Raton, FL: CRC Press.
Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.
Ramsey, W. M. (2016). Untangling two questions about mental representation. New Ideas in Psychology, 40, 3–12.
Rescorla, M. (2015). The representational foundations of computation. Philosophia Mathematica, 23, 338–366.
Rolls, E., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 73, 713–726.
Rossi, G. B. (2006). A probabilistic theory of measurement. Measurement, 39, 34–50.
Russell, B. (1927). The analysis of matter. London: Harcourt.
Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Minds and Machines, 19, 211–240.
Ryder, D. (2009). Problems of representation I: nature and role. In J. Symons & P. Calvo (Eds.), The Routledge companion to philosophy of psychology (pp. 233–250). London: Routledge.
Sakai, K., Naya, Y., & Miyashita, Y. (1994). Neuronal tuning and associative mechanisms in form representation. Learning and Menory, 1, 83–105.
Scheutz, M. (Ed.) (2002). Computationalism—New Directions. Cambridge, MA: MIT Press.
Sejnowski, T. J. (1998). Neural populations revealed. Nature, 332, 308.
Shea, N. (2014). Exploitable isomorphism and structural representation. Proceedings of the Aristotelian Society, 114, 123–144.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.
Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.
Stevens, J. L. R., Law, J. S., Antolik, J., & Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. JNS, 33(40), 15747–15766.
Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78, 364–375.
Suppes, P., Krantz, D., Luce, D., & Tversky, A. (1989). Foundations of measurement—Volume II geometrical, threshold, and probabilistic representations. New York: Academic Press.
Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87, 449–508.
Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.
Turrigiano, G. G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103.
Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.
Watson, R. (1995). Representatlonal ldeas: From Plato to Patrlcla Churchland. Dordrecht: Kluwer.
Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron’s cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 5.
Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies. In Formal concept analysis—Foundations and applications (pp. 1–33). Berlin: Springer.
Wilson, S. P., Law, J. S., Mitchinson, B., Prescott, T. J., & Bednar, J. A. (2010). Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE, 5, e8778.
Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.
Woodward, J. (2008). Mental causation and neural mechanisms. In J. Hohwy & J. Kallestrup (Eds.), Being reduced: New essays on reduction, explanation, and causation (pp. 218–262). Oxford: Oxford University Press.
Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23, 1015–1027.
Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews Neuroscience, 16, 1–11.
Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes. Neural Computation, 10, 403–430.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Plebe, A., De La Cruz, V.M. Neural Representations Beyond “Plus X”. Minds & Machines 28, 93–117 (2018). https://doi.org/10.1007/s11023-018-9457-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11023-018-9457-6