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Abstract. We study topology control problems in ad hoc networks where network nodes get to choose their power levels in order to
ensure desired connectivity properties. Unlike most other work on this topic, we assume that the network nodes are owned by different
entities, whose only goal is to maximize their own utility that they get out of the network without considering the overall performance of
the network. Game theory is the appropriate tool to study such selfish nodes: we define several topology control games in which the nodes
need to choose power levels in order to connect to other nodes in the network to reach their communication partners while at the same
time minimizing their costs. We study Nash equilibria and show that—among the games we define—these can only be guaranteed to exist
if each network node is required to be connected to all other nodes (we call this the STRONG CONNECTIVITY GAME). For a variation called
CONNECTIVITY GAME, where each node is only required to be connected (possibly via intermediate nodes) to a given set of nodes, we
show that Nash equilibria do not necessarily exist. We further study how to find Nash equilibria with incentive-compatible algorithms and
compare the cost of Nash equilibria to the cost of a social optimum, which is a radius assignment that minimizes the total cost in a network
where nodes cooperate. We also study variations of the games; one where nodes not only have to be connected, but k-connected, and one
that we call the REACHABILITY GAME, where nodes have to reach as many other nodes as possible, while keeping costs low. We extend
our study of the STRONG CONNECTIVITY GAME and the CONNECTIVITY GAME to wireless networks with directional antennas and wireline
networks, where nodes need to choose neighbors to which they will pay a link. Our work is a first step towards game-theoretic analyses of
topology control in wireless and wireline networks.
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1. Introduction

Unlike traditional, fixed wireline networks, next genera-
tion communication networks are likely to be ad hoc, or
hybrid (i.e., a combination of ad hoc and wireline) net-
works. An ad hoc network consists of an arbitrary distribu-
tion of transceivers or radios in some geographical location
that communicate with each other possibly via intermediate
transceivers who forward data. Earliest examples of ad hoc
networks were in military applications. Recent advances in
the commercialization of intelligent radio devices are likely
to lead to the wide-spread emergence of ad hoc or hybrid
networks [16].

Topology control. Depending on its power level and on the
nature of environmental interference, a node in an ad hoc net-
work can reach all nodes in a certain range. The transmission
range of a node u depends on the transmitting power Pu

emit

of the node: the power prec
u,v at which a node v at distance d(u,

*A preliminary version of this paper appeared in DIALM-POMC ’03 [8].

v) to the transmitting node u receives the signal is [7]:

P rec
u,v = K

d(u, v)α
P emit

u , (1)

where K is a constant and α is the distance-power gradient
varying between one and six depending on the environmental
conditions of the network. If this power exceeds a minimum
level, a node v at this point can successfully receive the mes-
sage from node u, and falls within the transmission range of
u. Antennas are most often assumed to be omnidirectional,
i.e., the power level depends only on the distance from the
sender, and not on the direction; in this case, the radius is a
proxy for the power level, and this gives us the transmission
graph [17]. The transmission graph is a directed graph G(V, E)
that is defined as follows for a fixed set of radii: V is the set of
nodes, and the directed edge e = (u, v) is present in E if node v
is within the power range of node u. We also consider graphs
resulting from directional antennas and wireline networks,
where this assumption of omnidirectionality does not hold.
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Efficient communication in an ad hoc network requires
that the transmission graph satisfy certain properties such as
connectivity, energy-efficiency and robustness. The area of
topology control deals with choosing the radii such that the
transmission graph has the desired properties; see [17] for
a survey. Existing work on energy-efficient topology con-
trol [17] has focused on the problems of minimizing the sum
of the radii (or the sum of some power of the radii) while en-
suring that the transmission graph has the desired properties.
Typically, such algorithms either require centralized control,
or require that the nodes run a distributed algorithm while
cooperating and trusting each other. While such an assump-
tion on node behavior might hold for special networks, e.g.
military or government applications, it is certainly unreason-
able in commercial applications, which are strongly driven
by economic incentives. More often than not, different nodes
will be owned by different commercial entities, which would
all like to communicate together, but – at the same time –
individually want to incur as little cost as possible. Thus, in
most scenarios, network nodes are selfish and each node’s
only goal is to maximize its own utility. This is a perfect
scenario to be studied as a non-cooperative game. The selfish
nature of network nodes, of course, affects all layers of the
protocol stack: a truly selfish node will try to exploit weak-
nesses of the protocols on any layer in order to improve its
utility. On the data link layer, the protocol for fixing trans-
mission radii and the protocol of allocating channel resources
(on the MAC sublayer) could be exploited by selfish nodes;
on the network layer, selfishness comes most obviously into
play when a node is asked to forward data packets for an-
other node, which only drains the battery of the forwarding
node, thus bringing a negative utility to that node. A node can
be made willing to forward packets by paying an appropri-
ate amount of money; several schemes have been suggested
that aim at solving the selfishness problem on the network
layer [1,4]. In this work, we will focus on the data link layer:
we study different topology control problems as games by
examining their equilibria, and by designing algorithms for
reaching such equilibria. The ultimate goal of this line of
research would be to combine the notion of selfishness such
that it stretches across all protocol stack layers.

Computational game theory. Game theory has been used as
a tool to model and study different aspects of communication
networks only in recent years. Transportation networks have
been subject to game theoretic analyses (see e.g. [3,6]) and
policies on taxation and design of road networks have been
influenced by game theoretic models [3]. Much of the clas-
sical game-theory work has been non-algorithmic in nature,
without much focus on the computational complexity of find-
ing good policies or designing good networks. The work by
Roughgarden [18] represents recent attempts at addressing
such algorithmic questions for traffic and wireline networks.
Due to the intense interest in large networks, like the Internet,
a lot of recent work in computational game theory focuses on

network design. Roughgarden [19] considered the problem
of designing networks that reduce the cost of selfish routing,
and showed computational intractability of such problems.
The work most closely related to the questions studied in this
paper is [2,9].

For modeling communication networks as games, it is
reasonable to think of each node as a player or an agent. Each
player has a certain set of strategies: in the games we consider,
a player needs to choose a radius or a set of neighbors, and
such a choice is a strategy. Each player is endowed with a local
utility function. A lot of work in game theory has been devoted
to stable operating points in non-cooperative games, and the
most popular notion is that of a Nash equilibrium (see [15]
for details). A choice of strategies σ̄ for all players is said to
be a Nash equilibrium, if no player has an incentive to deviate
from σ̄ in order to improve its utility. A Nash equilibrium can
be pure or mixed: a mixed equilibrium is relevant if players
randomize on their strategies. In this work we will generally
not consider mixed strategies, as they do not seem to be
practical in the context of such design problems (see also [2]
for a similar argument). If the game has a Nash equilibrium,
game theorists believe that such a game – played repeatedly
– would tend to end up in a Nash equilibrium. Therefore,
questions of existence of Nash equilibria and algorithms for
finding them are of crucial importance.

Our results. We consider topology control problems in ad
hoc networks, and model them as non-cooperative games.
Ad hoc networks are characteristically different from other
infrastructure networks, e.g. transportation systems, in many
ways, and very little game theoretic analysis has been done so
far for ad hoc networks. We consider three types of scenarios
on these networks:

(i) wireless networks with omnidirectional antennas
(ii) wireless networks with directional antennas, and

(iii) wireline networks.

In contrast to the transmission graphs resulting from om-
nidirectional antennas (as explained earlier), directional an-
tennas allow specific links to be chosen.

As in the omnidirectional case, these links are not sym-
metric, i.e., a link from u to v does not imply a link in the
reverse direction. It is predicted that directional antennas will
be deployed extensively in future generation networks (see
e.g. [20]). In the wireline case the links are symmetric, and
so they need to be paid for only once.

On these networks, we study the CONNECTIVITY GAME:
we are given a set of source-destination pairs, and each pair
needs to be connected (see Section 2 for details). Each node
chooses the smallest possible radius (in the omnidirectional
wireless case) and cheapest set of links (in the directional
wireless and wireline cases) to achieve this goal. We study
the following questions: do Nash Equilibria exist, and if
they do, what is their quality compared to the optimal
choice? Also, how do local algorithms for finding such
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equilibria perform? A special case of this game is the STRONG

CONNECTIVITY GAME, where each node needs to reach every
other node. We also extend these games to the cases where
k node-disjoint paths are needed between each source and
destination pair; these are denoted by k-CONNECTIVITY

GAME and the STRONG k-CONNECTIVITY GAME; this captures
the requirement of robustness in such networks, so that the
network operation is not disrupted by some node deletions.

Our main results on the various connectivity games are
summarized below.

1. For the omnidirectional antenna network, the CONNECTIV-
ITY GAME need not always have a pure Nash equilibrium,
not even a β-approximate Nash equilibrium, for any β >

0. Deciding whether an instance of this game has a pure
Nash equilibrium is NP-complete if the underlying graph
satisfies the triangle inequality. The first of these results
extends to the k-CONNECTIVITY GAME: for any k, the game
does not necessarily have a pure Nash equilibrium. We fur-
ther show that the CONNECTIVITY GAME need not always
have a pure Nash equilibrium in neither the directional
antenna network nor the wireline network.

2. For Euclidean instances, the STRONG CONNECTIVITY

GAME always has a pure Nash equilibrium, in all the three
networks we consider. In fact, there are multiple Nash
equilibria, whose costs can vary widely. Also, any local
optimum to the total energy function is a Nash equilibrium
in the omnidirectional antenna network. This also holds
for the STRONG k-CONNECTIVITY GAME.

3. For Euclidean instances, there is a simple local improve-
ment algorithm that yields a Nash equilibrium for the
STRONG CONNECTIVITY GAME for the wireless cases. Us-
ing an observation from [13], this yields an algorithm to
find a Nash equilibrium of cost at most twice the opti-
mum. For the k-connected version, a constant factor can
be achieved for the case of α = 1, but for larger α, the
factor depends on k.

4. For Euclidean instances, the cost of any Nash equilib-
rium for the STRONG CONNECTIVITY GAME on omnidirec-
tional wireless instances is bounded by O(nα) times the
optimal cost. This is interesting, because it is indepen-
dent of the distances between points, and only depends
on their number. This bound even holds for the STRONG

k-CONNECTIVITY GAME, where the lack of dependence on
k is notable. This bound is tight: there is an instance which
has a Nash equilibrium of cost �(nα) times the cost of
the optimum. This tight instance has a special structure,
and typical instances have a much better ratio. Indeed, for
a random distribution of n points in a

√
n ×

√
n plane

region, the ratio of the cost of the worst Nash equilibrium
to the optimal cost is bounded by O(nα/2 log αn), with
high probability. Also, we show that a local improvement
algorithm results in Nash equilibria of cost O(log O(1)n)
times the optimal, with high probability.

We consider a related game, called the REACHABILITY

GAME, in which the utility function for a node v is defined as
the difference between the number of nodes reached from v
and rα

v , where rv is the radius chosen by v and α is a constant
(and each node chooses a radius in order to maximize its
utility). Informally, each node wishes to maximize the number
of nodes it connects to while keeping its cost low. We show
that there are omnidirectional wireless (Euclidean) instances
of this game with no pure Nash equilibrium, even when the
points are located on a line for the case of α = 1. For a
random distribution of n points in a

√
n ×

√
n plane region,

the REACHABILITY GAME has a 1 + o(1)-approximate Nash
equilibrium, with high probability.

Related results. The CONNECTIVITY GAME can be viewed as
a power level version of Anshelevich et al. [2]. Their work
involves players on a network, with edges having costs, and
each player has a set of terminals that need to be connected -
so edges have to be put in to achieve the desired connectivity,
but an edge can be used only if it is paid for by the players;
therefore, strategies for the players involve choosing pay-
ments for the edges so that their connectivity requirements
are met. Anshelevich et al. show that if each player has to
connect a single terminal to a common source, a Nash equi-
librium exists, and they describe an algorithm to compute
a (1+ε)-approximate equilibrium. In contrast, if the play-
ers want to connect multiple terminals, no Nash equilibrium
might exist, but they show how to construct an approximate
equilibrium. Our model can be viewed as a restriction of their
model to an ad hoc network setting, where a node can only
reach all the nodes within its transmission range. Also, in
an ad hoc network, a node only has control on its power, in
contrast to [2], where a node can pay for far away edges. In
our wireline and directional wireless versions of the game, a
node can only pay for incident edges, and the payment cannot
be divided among nodes. The game defined in [9] is similar to
the wireline version of our games and the authors also study
quality of Nash equilibria, but the utility function of their
game is drastically different from our game. A good survey
on topology control is [17], and [12] considers the problem of
finding a radius assignment that minimizes the power while
maintaining k-connectivity.

Organization. Section 2 defines all the basic graph theoretic
and game theoretic concepts, and the models we study. Sec-
tion 3 describes the results on the STRONG CONNECTIVITY

GAME and the STRONG k-CONNECTIVITY GAME, Section 4
describes the results on the CONNECTIVITY GAME and the
k-CONNECTIVITY GAME, and Section 5 describes the results
on the REACHABILITY GAME. In Section 6 we describe the
extensions of the STRONG CONNECTIVITY GAME and the CON-
NECTIVITY GAME to wireless networks with directional an-
tennas, and in Section 7 to wireline networks. We conclude in
Section 8. Some proofs are presented in the Appendix.
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2. Preliminaries

Our input is always an undirected graph H (V,E′, w), with |V|
= n and with w̄ ∈ R

|E|
+ being the weight vector on edges (i.e.,

we ≥ 0 is the weight of edge e ∈ E′). In the wireless networks
with omnidirectional antennas, a radius vector r̄ ∈ R

n
+ (rv

being the radius of v ∈ V), induces a directed graph G(V, E)
in the following manner: e = (u, v) ∈ E′ is present in E if ru ≥
we. We will denote the graph induced by radius vector r̄ with
G(V, r̄). In Sections 6 and 7 we will introduce the equivalent
definitions for a wireless network with directional antennas
and a wireline network.

The graphs we consider here will not be arbitrary—they
are either Euclidean or the weight vector w̄ satisfies the tri-
angle inequality. H is Euclidean if there is an embedding of V
in R

k (k will usually be 2 or 3) such that we = d(u, v), where
d() denotes the Euclidean distance function.

We say two nodes u and v are k-connected, if they are
connected via k internally node-disjoint paths. If u and v are
k-connected, we can delete any arbitrary set S ⊂ V\{u, v}, |S|
= k − 1, without disconnecting u and v. Note that if there is
a direct link between u and v, the second statement holds, but
the nodes are not k-connected according to our definition. In
particular, if there is a direct link between u and v, then u and v
are k-connected only iff we can in addition delete an arbitrary
set S⊂ V\{u,v}, |S| = k − 2, without disconnecting u and v.

Now we define the game theory notation we need; see [15]
for more details. Formally, a game in its normal form is
defined as the tuple (I, {Sv}, {Uv()}), where I is the set of
players, Sv is the set of strategies for player v ∈ I and Uv: �v

Sv → R is the utility function for player v ∈ I. In our models,
each node v is associated with an independent, selfish agent;
so I = V. Each point v has to choose a radius (power level).
Therefore the set of strategies Sv for v ∈ V is R, the set of all
possible radii (note that it is sufficient to consider the finite
set {we, e = {v, v′} ∈ E′} for the set of possible radii for
point v, instead of R). A choice of strategies σ̄ for all points
is a radius vector r̄ , with rv being the radius chosen by v. The
cost a node v incurs is C(v) = rα

v for strategy rv, where α

is a constant known as the distance power gradient, usually
being 2. We can then define the cost of a strategy vector as
Cr̄ = ∑

v rα
v . The game is fully specified once we define the

utility functions.

Nash equilibria. In all the described games, we will be in-
terested in Nash equilibria. A choice of strategies σ̄ is said
to be a Nash equilibrium if Uv(σ v, σ−v) ≥ Uv(σ ′

v, σ−v)∀vε V,
where σ−v is the vector denoting the strategies of all points
other than v. Informally, σ̄ is a Nash equilibrium, if no point v
has incentive to locally change its strategy (while others keep
their choices fixed).

The Nash equilibrium defined above is called a pure Nash
equilibrium, because the players are not allowed to random-
ize on their strategies. In the case where players choose their
strategies according to a probability distribution, the appro-
priate notion is that of a mixed Nash equilibrium. We will

consider only pure strategies and pure Nash equilibria in this
paper, as mixed strategies do not seem to be very reasonable
in studies of network design, such as ours (see also [2]). Find-
ing Nash equilibria is desirable, however, pure Nash equilib-
ria need not necessarily exist in all games; the notion of a
β-approximate Nash equilibrium is a possibility to deal with
this: a choice of strategies σ̄ for all players is said to be a β-
approximate Nash equilibrium, if unilateral deviation from σ̄

by an individual player will increase its utility by at most a
factor β ≥ 1 for positive utility functions, and by a factor of
at least 1/β ≤ 1 for negative utility functions. Approximate
Nash equilibria might be a more suitable notion when only
partial information is available.

In this paper we consider the following games.

The connectivity games. In the CONNECTIVITY GAME we are
given j source-sink pairs (s1, t1), . . . , (sj, tj); each source si

needs to connect to its target or sink ti. The sources and tar-
gets are located on the vertices of the input graph. We denote
by S(v) (resp. T(v)) the set of sources (resp. targets) that are
located on vertex v. Each vertex v has to choose a strategy
σ v, such that every source s ∈ S(v) gets connected to its cor-
responding target (possibly over several intermediate nodes)
in the resulting transmission graph, while keeping its cost
C(v) as small as possible. We assume for the CONNECTIVITY

GAME that there is a direct link between each source and its
sink in the input graph H.

For a strategy vector σ̄ , the utility Uv(σ̄ ) of vertex v is
defined as −M if at least one si ∈ S(v) does not connect to ti,
M being some very large number, and is −C(v), if all si ∈ S(v)
connect to their ti. The utilities of all points for which S(v) is
empty is 0. The social optimum for such a game is a strategy
vector σ̄ such that each si reaches ti in the transmission graph
G(V, σ̄ ) and C(σ̄ ) is minimized.

The k-CONNECTIVITY GAME is a generalization of the
CONNECTIVITY GAME, where each node needs to reach its
target via k internally disjoint paths. In this game the input
graph H needs to be k-connected.

The strong connectivity games. The STRONG CONNECTIV-
ITY GAME is a special case of the CONNECTIVITY GAME, in
which each point needs to connect to every other point. The
STRONG k-CONNECTIVITY GAME is a generalization of the
STRONG CONNECTIVITY GAME, where each node needs to
reach every other node via k internally disjoint paths. We also
assume that there must be a direct link between each source
and its sink in the input graph H, which implies in this case
that H is required to be a complete graph.

The reachability game. Given r̄ , let fr̄ (v) denote the number
of vertices reachable from v in G(V, r̄). The utility of a player
v ε V is defined as U(v) = fr̄ (v) − rα

v .

Random points in the plane. We consider random distri-
butions of n points within a

√
n ×

√
n region of the plane,

denoted by A. Each point is thrown into this region inde-
pendently and uniformly at random. This experiment places
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points roughly uniformly in the region, as is shown in the
following lemma, which will be used later. The lemma fol-
lows from the standard Chernoff bound (e.g. [5]); “with high
probability” means the probability is at least 1−1/nO(1).

Lemma 1. Partition the region A into n/ log 2n parts of
dimensions log n × log n. For any such part B in an instance
P of random points, the number of points in B is in the interval
[(1−ε)log2n, (1 + ε)log2n], with high probability, where ε is
a small, strictly positive constant.

3. Equilibria in the Strong Connectivity Games

In this section we deal with the STRONG CONNECTIVITY

GAME on omnidirectional wireless instances, and will not
state this explicitly in all the results. Many of the results are
stated for the STRONG k-CONNECTIVITY GAME, where each
node has to reach every other node over k internally disjoint
paths.

Existence of Nash equlibria

Lemma 2. Any instance of the STRONG k-CONNECTIVITY

GAME has a pure Nash equilibrium for k ≤ n − 1. In fact, any
radius vector r̄ that is a local optimum1 for the cost function
C(r̄) is a Nash equilibrium.

Proof: Consider the set of radius vectors {r̄ | G(V, r̄) is
strongly k-connected}. This set is non-empty for any k ≤ n −
1 and has local optima with respect to the cost function C(r̄).
We will prove by contradiction that every local optimum is
a Nash equilibrium. Let s̄ be a local optimum. Suppose that
there is a node v that has an incentive to decrease its radius
from sv to s′

v, that is, it still has k internally disjoint paths to
every other node in G′ := G(V, s̄ ′), even after at least one of
its links (v, v′) gets deleted. We claim that every node u still
has k internally disjoint paths to every other node in G′, which
then contradicts that s̄ is a local optimum. Let us first prove
that u is still k-connected to v′. If this were not the case, there
must be a separator S ⊂ V\{u, v′} of size k−1 (or k − 2 if u
has a direct link to v′) that separates u and v′. First, observe
that v /∈ S; if this were not the case, i.e., v ∈ S, then u and v′

would not be k-connected even in G, since the only difference
between G and G′ is the presence of extra edges going out
of v. Therefore, v /∈ S. Assume u reaches v in G′\S. Since v
reaches v′ even in G′\S, u must reach v′ in G′\S. Now assume
u and v are disconnected in G′\S. But this would imply that
S is a separator for u and v in the graph G(V, s̄) already,
since we deleted only links going out of v, and therefore this
contradicts the fact that G(V, s̄) is strongly k-connected. The
same arguments hold for any node w 
= v′. �

1Let R = {r̄ | G(V, r̄) is strongly k-connected}. r̄ ′ ∈ R is a neighbor of r̄ ∈
R, if there is a w ∈ V such that rw 
= r′

w and rw = r′
w for all v ∈ V, v 
= w.

r̄ r̄∈ R is a local optimum of R, if C(r̄) ≥ C(r̄ ′ for all radius vectors r̄ ′ that
are neighbors of r̄ .

Quality of Nash equlibria. Unfortunately, this game can
have multiple Nash equilibria of widely varying costs. It is,
however, surprising that the ratio of the cost of any Nash equi-
librium to the optimal cost depends only on n, and is indepen-
dent of the actual interpoint distances as well as of the required
connectivity k of the transmission graph. The following
lemma bounds the maximum cost of any Nash equilibrium.

Lemma 3. Any Nash equilibrium for the STRONG k-
CONNECTIVITY GAME has cost at most nα times the optimal
cost.

Proof: Assume the radius vector r̄ constitutes a Nash equi-
librium for the STRONG k-CONNECTIVITY GAME and s̄ is a
choice of radii such that C(s̄) is minimal and G(V, s̄) is
strongly k-connected.

Fix any vertex v0. Since any other vertex can reach v0 in
G(V, s̄) over k internally disjoint paths, we can construct a
subgraph G′ of G(V, s̄) that includes all edges needed such that
every node can reach v0 via k internally disjoint paths. Denote
by wmax(v) = max {we, e = (v, v′) ε G′}. By construction,

C(s̄) =
∑

v∈V

sα
v ≥

∑

v∈V

wmax(v)α

Next, observe that rv ≤ ∑
vεV wmax (v), because w(v,v′) ≤∑

vεV wmax (v), for any point v′ ε V (since the edge lengths
are euclidean distances, and satisfy the triangle inequality).
Therefore, C(r̄) ≤ n(

∑
v∈V wmax(v))α . The ratio of the cost of

the Nash equilibrium to the optimal cost is therefore bounded
by

C(r̄)

C(s̄)
≤ n

( ∑
v∈V wmax(v)

)α

∑
v∈V wmax(v)α

Since the denominator is fixed, this ratio is maximized when
the divider is minimized. The minimum value of

∑
v∈V wmax

(v)α is n((
∑

v∈V wmax(v))/n)α . Therefore, the ratio C(r̄)/C(s̄)
is bounded by nα . �

The bound in the above lemma is tight: there is an instance
where the cost of a Nash equilibrium is �(nα) times the
optimal cost, as Observation 1 shows.

Observation 1. The instance given in figure 1 has a Nash
equilibrium of cost �(nα) times the optimal cost.

Proof: Let n locations be placed in the plane as illustrated
in Figure 1. At every location there are k vertices colocated,
hence there are kn vertices in total. There are n/8 locations in
each of the levels A to F, and the remaining n/4 locations are
situated in the set R along the right side of those levels. The
locations in level A to F have a horizontal distance of 1 from
each other and the vertical distances between the levels are
n/8, 0.5, 0.4, 0.5, and 1 as given in the figure. The locations
in R all have interpoint distance 1. For n sufficiently big, this
graph is Euclidean.
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Figure 1. A graph where we can find a Nash equilibrium of cost �(nα)
times the optimal cost.

Assume each node chooses radius rv = 1. For k = 1, it is
easy to verify that the induced graph G(V, r̄) is strongly con-
nected. For k > 1, each node can reach its neighbor locations
(the locations that are within distance 1) directly, as well as
via the k−1 vertices colocated at its own location. It can reach
the vertices colocated at its own location via the k vertices
of one of its neighbor locations. Therefore the transmission
graph is strongly k-connected. The cost of the radius vector
is C(r̄) = ∑

v∈V rvα = kn. Now consider a second choice of
radii r̄ ′. We denote by r′

X the radius of any node v in the subset
X ⊂ V.

r ′
A = n/8, r ′

B = 0.5, r ′
C = 0.4, r ′

D = 0.5,

r ′
E = 1, r ′

F = 1, r ′
R = 1

The following proves that this choice of radii constitutes a
Nash equilibrium. In order for a node to have a utility function
that is bigger than −M, that is, for the induced graph to be
strongly k-connected, each node has to choose a positive
(nonzero) radius. If they chose a zero radius, they would
reach only the k−1 nodes colocated at their location and
therefore not have k internally disjoint paths to every other
node. The nodes in B, C, F, and R choose their smallest
nonzero radius and therefore do not have an incentive to
decrease it. Each of the nodes in level A to E chooses its
radius such that it can reach the corresponding node in the
level above. Observe that this induces a graph that can be
traversed in various cycles in clockwise order, and the induced
graph is strongly k-connected. However, the graph cannot be
traversed in counterclockwise direction, since there are no
edges going from the nodes in level C to the nodes in level
B. Hence, if any one of the nodes in levels A to E unilaterally
decreased its radius, it would not reach the node in the level
above through k internally disjoint paths anymore and the
cycle would be broken. Assume for example, any one node v

in level A chose a radius of 1 instead of n/8. Let us call the
location of node v A1, and let us denote by B1 the location
in level B that is directly above A1. The nodes at location
B1 would then only be reached by the k − 1 nodes colocated
with v (nodes in C do not reach nodes in B), but not by v.
Therefore, v would only have k − 1 internally disjoint paths
to the nodes at B1 and no incentive to decrease its radius
to 1. For a node v at a location D1 in level D, it would get
impossible to reach the nodes directly above it at location
E1 in level E via k internally disjoint paths, if it decreased it
radius. Node v would still reach E1 through k − 1 internally
disjoint paths, and the location C1 in level C directly below
it, but the nodes in C1 would only lead back to D1 and never
to E1. The same line of argument can be used for the nodes
in level E.

The cost of this Nash equilibrium is kn/8 *(n/8)α+ O(kn)
= O(knα+1) and we have therefore found a Nash equilibrium
of cost �(nα) times the optimal cost, for any k.

Finding a Nash equilibrium. The following local improve-
ment algorithm always leads to a Nash equilibrium in the
STRONG k-CONNECTIVITY GAME.

Local improvement algorithm

1. Start with any choice of radii r̄ (0) = r̄ such that G(V, r̄) is
strongly k-connected.

2. Order the vertices arbitrarily as v1, . . . , vn and consider the
vertices in this order.

3. In step i, the choice of radii is r̄ (i−1) initially. Vertex vi

decreases its radius to the smallest radius so that it can still
reach every other vertex via k internally disjoint paths. Let
r̄ (i) denote the choice of radii after vi updates its radius.

Lemma 4. The above local improvement algorithm always
leads to a Nash equilibrium of the STRONG k-CONNECTIVITY

GAME in polynomial time.

Proof: Throughout the algorithm, the graph G(V, r̄ (i)) stays
strongly k-connected (see proof of Lemma 2). Therefore, no
vertex ever has an incentive to increase its radius. It remains
to be proven that, for all i, vertex vi does not have an incentive
to further decrease its radius after any of the steps i + 1, · · ·,
n. Since in those steps no vertex increases its radius, no new
paths are generated and vi never develops an incentive to
decrease its radius further. �

The local improvement algorithm described above is
incentive-compatible. We call an algorithm incentive-
compatible, if at every step in the algorithm, a vertex does
what is in its best interest, that is, what maximizes its utility
function, but we require that a vertex only acts when it is its
turn to act. In our algorithm, if we take the start radius vector
as given and force the vertices to follow the order given in
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step 2, the algorithm does exactly what each of the selfish
vertices would do.2

There are different possibilities for finding a start vector
r̄ (0) such that G(V, r̄ (0)) is strongly k-connected, as needed
in step 1 of the local improvement algorithm. Certainly the
vector r̄ with rv = max {we, e = {v, v′} ∈ H(V, E′, w̄)} yields
a strongly k-connected transmission graph.

For the case of k = 1, an alternative is to start with a radius
vector r̄ such that rv = 0 for all v ∈ V and then go through all
the nodes once in arbitrary order and let each of them choose
the radius that maximizes its utility function, which will yield
a good start vector. In other words, we start with a zero radius
vector, choose an arbitrary order of the vertices and perform
step 3 of the above algorithm twice.

There is a third way to compute a start vector, which has
the advantage, that we can give an upper bound on the cost of
the resulting Nash equilibrium. We will first consider the case
k = 1 and then describe how the algorithm can be generalized
for k > 1. For the construction of this start vector we follow
an algorithm given in [13].

MST algorithm

1. Construct the undirected, complete graph KV over V with
edge weights w{u,v}α for all u, v ε V.

2. Find a minimum weight spanning tree T of KV .
3. For all v ε V let rv = max {w{v,v′} | {v, v′}ε T}.

Corollary 1. A Nash equilibrium of the STRONG CONNEC-
TIVITY GAME of cost at most twice the optimum can be found
in polynomial time.

Proof: Construct vector r̄ (0) with the algorithm given
above. Lemma 4 implies that applying the local improvement
algorithm with the start vector r̄ (0) yields a vector of radii r̄ (n)

= r̄ which constitutes a Nash equilibrium of the STRONG

CONNECTIVITY GAME. In [13] it is shown that C(OPT) >

C(T) and that

C
(
r̄ (0)

) =
∑

v∈V

(

max
{v′|{v,v′}∈T }

w{v,v′}

)α

=
∑

v∈V

max
{v′|{v,v′}∈T }

(
w{v,v′}

)α
<

∑

v∈V

∑

{v′|{v,v′}∈T }

(
w{v,v′}

)α

= 2 ∗ C(T ) < 2 ∗ C(OPT).

Clearly C(r̄) ≤ C(r̄ (0)), since throughout the local improve-
ment algorithm, the radii only get smaller, and therefore also
the cost goes down. �

In order to find a start vector that yields a strongly k-
connected graph, for k > 1, one has to change step 2 as
follows. Instead of finding a minimum weight spanning tree

2Algorithmic incentive-compatibility is an extension of the notion of truth-
fulness from game theory to a distributed computation environment. Our
definition is a relatively weak version as we limit the freedom of a vertex
considerably by forcing it to only act when it is its turn.

T of KV , one needs to find a minimum weight k-connected
subgraph G′ of KV . While this is NP-complete, there are sev-
eral approximation algorithms. If β denotes the best known
approximation for this problem, the cost of the resulting Nash
equilibrium after using the local improvement vector with a
start vector from such an algorithm will then be at most 2β

times the optimal cost. For k = 2, β = 3/2, from the result
of [10], and if the edge lengths satisfy the triangle inequality
β = 2 + 2(k−1)/n, from [14]; note that the edge lengths sat-
isfy the triangle inequality only for α = 1, but not for α > 1.
When the edge lengths do not satisfy the triangle inequality,
no constant factor approximations are known.

The STRONG CONNECTIVITY GAME for random points in the
plane. In this section we consider the case k = 1 only. The
bound on the ratio of the cost of the worst Nash equilibrium
to the optimal cost in the previous section is tight, but the tight
instance has a special structure. Most arrangements of points
in the plane are likely to lack such a structure. Our results in
this section show that this is indeed true: if the n points are dis-
tributed randomly in a square region of dimensions

√
n ×

√
n,

the ratio is much smaller. As in Section 2, let P denote a ran-
dom distribution of the n points. A denotes the region in which
the points are thrown.

Lemma 5. For an instanceP , let r̄ be any Nash equilibrium
and let s̄ be a radius vector that minimizes the cost C(s̄).
Then, (a) C(s̄) ≥ �(n/ logα n), with high probability, and (b)
C(r̄)/C(s̄) ≤ nα/2 logα n, with high probability.

Proof: (a) Partition the region A into square grid regions of
dimensions log n × log n. By Lemma 1, the number of points
in each grid cell B of A is very close to log2 n. Let s̄ be the
optimal radius vector for this random instance.

Consider any such grid cell B in A that is not a boundary
cell. Let S be the set consisting of B and the 8 cells adjacent
to B. We first show that

∑
B′εS

∑
iεB′ si ≥ log n. Since G(V,

s̄) is strongly connected, points in B must connect to points
in cells not adjacent to it. Thus, there must be a directed path
in G(V, s̄) from a point in B to some cell B′′ that is distance
2 away from B (cells adjacent to cells in S are said to be
distance 2 away from B). Since this path has length at least
log n,

∑
B′∈S

∑
i∈B′ si ≥ log n.

Next, we show that
∑

B′∈S
∑

i∈B′ si
α ≥ 1/log α−1n. This

follows directly from convexity. Since
∑

B′εS
∑

iεB′ si ≥ log
n,

∑
B′εS

∑
iεB′ si

α is minimized when all the si are equal, and
therefore,

∑

B ′∈S

∑

i∈B ′
sα
i ≥ nS(log n/nS)α

= logα n/nα−1
S

≥ �(1/ logα−2 n)

where nS = �(log2 n) denotes the number of points contained
in cells in S.
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Finally, partition A into n/(9 log2 n) parts, each part con-
sisting of 9 cells. By using the above bound on the sum of the
powers of the radii of the points in it, (a) follows.

(b) By construction, d(u, v) = O(
√

n) for any two points
u, v. Therefore, ru = O(

√
n) for any point u, and C(r̄) ≤

O(nα/2+1). From (a), C(s̄) = �(n/logα n) for the optimal
radius vector s̄, and the lemma now follows. �

For a random distribution of points in the plane, the local
improvement algorithm described earlier tends to result in
Nash equilibria of better quality. In fact, the next lemma
shows for α = 2 that if we start with r̄ (0) such that rv

(0) is
the largest possible radius, the resulting Nash equilibrium is
quite good.

Lemma 6. Let r̄ (0) be a radius vector that satisfies rv
(0) ≥

maxw{d(v,w) } ∀v ε V. Let r̄ ′ be the Nash equilibrium result-
ing from the local improvement algorithm, for any order of
updating the vertices, and let s̄ be the optimal radius vec-
tor. Then, for α = 2, C(r̄ ′)/C(s̄) ≤ O (log O(1)n), with high
probability.

Proof: The proof basically improves the bound computed
in the proof of Lemma 5. Partition the

√
n ×

√
n region, A,

into n/m2 blocks of dimensions m × m each, where m will be
defined later. Observe that at the end of the local improvement
algorithm, all except possibly one vertex in each block have
radius O(m). Intuitively, the vertex within a block that got
updated last might have a large radius (even �(

√
n)) but all

other vertices that got updated earlier need to choose a radius
sufficient to connect to this leader.

Since there are n/m2 blocks, there are at most this many
leaders with large radius; the contribution of the remaining
nodes to the cost of the Nash equilibrium is O(nm2). Each
leader has radius O(

√
n), and the maximum contribution from

the leaders is O(n2/m2). Thus, the total cost is O(nm2 + n2/m2)
= O(n

√
n) for m = n1/4. Using the bound (a) from Lemma 5,

this gives a bound of O(
√

n log O(1)n) on the ratio of the cost
of r̄ ′ to the optimal.

We can improve this partitioning process repeatedly until
the number of leaders becomes small. Consider the next step:
partition the n/m2 leaders from step 1 into n/m4 blocks of m2

elements each. One thing to note is that within the block de-
fined in this step, the distances between two elements could be
O(m2). Again, there is at most one leader in each block, who
could possibly have radius larger than O(m2). This bounds
the contribution of the non-leaders to the cost by O(m4 n

m2 ) =
O(nm2). In general, if we repeat this process i times, the num-
ber of elements to consider at the ith step would be n/m2i−2,
and the radii of non leaders at the end of step i would be
bounded by mi. Therefore, the contribution of the non leaders
to the cost is O(nm2). If we choose m = O(log n), this process
would be repeated for i = O(log n/log log n) steps, and the
number of elements in step i becomes O(1); the total cost

over all steps becomes O(nm2 i) = O(n logO(1) n). The lemma
now follows from the bound (a) in Lemma 5. �

4. Equilibria in the connectivity games

Existence of Nash equilibria. Figure 2 shows an instance
of the CONNECTIVITY GAME without pure Nash equilibrium.
The instance consists of three sources nodes A, B, and C and
three sinks nodes A′, B′, and C′.

Observation 2. No pure Nash equilibrium exists for the
CONNECTIVITY GAME instance given in figure 2.

Proof: Assume for the sake of contradiction that such an
equilibrium exists with radii rA, rB, rC for the three source
vertices A, B, C respectively. We note immediately that ri ∈
{1, 2} for i ∈ {A, B, C}, as any radius ri < 1 would mean
that source i does not reach any other vertex in the graph and
thus certainly will not reach its sink i′, whereas any radius ri

> 2 cannot be part of a Nash equilibrium as reducing ri to
2 would still allow source i to reach its sink i′ with a better
utility. The following implications hold:

rA = 2 =⇒ rC = 1 (2)

rB = 2 =⇒ rA = 1 (3)

rC = 2 =⇒ rB = 1 (4)

rA = 1 =⇒ rC = 2 (5)

rB = 1 =⇒ rA = 2 (6)

rC = 1 =⇒ rB = 2 (7)

Implications (2)–(4) hold because the source on the right-
hand side of the implication can use the source on the
left-hand side of the implication to reach its target; impli-
cations (5)– (7) hold because the source on the left-hand
side would not reach its sink otherwise. Combining implica-
tions (2), (7), and (3), we obtain the following contradiction:

rA = 2 =⇒ rC = 1 =⇒ rB = 2 =⇒ rA = 1.

Thus, no pure Nash equilibrium exists for this instance.

2 2

22

1

A

B

B’

C’A’

C

2

1

2
1

Figure 2. Instance of the CONNECTIVITY GAME without Nash equilibrium.
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Figure 3. Instance of the k-CONNECTIVITY GAME without Nash equilibrium.

The previous result also holds for the k-CONNECTIVITY

GAME for k > 1. Consider the graph given in figure 3. It is
the same graph as the one in figure 2, but there are k + 1
additional helper nodes for each source node A, B, and C.
The nodes a1, . . . , ak (short the a-nodes) are source nodes
that have to reach the target a′ via k internally disjoint paths;
similarly for the b-, and c-nodes.

Observation 3. No pure Nash equilibrium exists for the
k-CONNECTIVITY GAME instance given in figure 3.

Proof: Let us first determine the radii for the helper nodes.
Since none of the nodes besides the a-nodes have an incentive
to choose a radius large enough to reach a′, the nodes a1,
. . . , ak−1 will choose their radius to be 1.5 in any Nash
equilibrium, and ak will choose the radius 1. With this choice
of radii, all of the a-nodes reach a′ via k internally disjoint
paths and none of them has an incentive to decrease its radius.
The same line of thought is used to determine the radii of the
b-nodes and the c-nodes. Now consider the radii of nodes A,
B, and C. Again, implications (2)–(7) hold. The first three
implications hold because the source on the right-hand side
of the implication can reach its target via the source on the
left hand-side as well as over its helper nodes and therefore
reaches its target via k internally disjoint paths. The remaining
three implications hold, because otherwise the source on the
right-hand side will reach its sink only over k−1 internally
disjoint paths. �

Existence of approximate Nash equilibria. With respect to
approximate Nash equilibria, a slight adaptation of the in-

stance from figure 2 yields the following negative result for
k = 1:

Corollary 2. An instance of the CONNECTIVITY GAME does
not necessarily have an approximate Nash equilibrium.

Proof: Consider the instance from figure 2 and replace each
edge of length 2 by an edge of length d, for an arbitrary d > 1.
In geometric terms, this corresponds to making the three
isosceles triangles longer. Each source node will now use a
radius of either 1 or d. In any feasible combination of radii of
the three sources as given in the proof of the previous lemma,
a reduction from radius d to 1 will improve the utility of the
corresponding source by a factor of 1/dα . Thus, this modified
instance does not have an β-approximate Nash equilibrium
for any β < dα . Since we can choose d arbitrarily large, the
corollary follows. �

It is instructive to look at the mixed Nash Equilibria for
these games as well. Again, consider the instance in figure 2.
In the mixed Nash equilibrium, let p denote the probability
that node A chooses radius 1; so it chooses radius 2 with
probability 1 − p. By symmetry, this distribution is the same
for each node. Recalling the definition of M from Section 2,
it is easy to see that the utility of any node can be written as
− p(1 − p) − Mp2− 2(1 − p), for the case of α = 1. This
function is maximized for p = 1

2(M−1) . As M → ∞, the
probability that each source chooses a radius of 2 tends to
1. Hence, it seems as if a radius vector with each source
choosing radius 2 becomes a Nash equilibrium. However, for
M = ∞, the utility functions are no longer continuous, and
no mixed equilibrium exists.

Complexity of deciding whether a Nash equilibrium ex-
ists. Knowing that Nash equilibria do not always exist does
not necessarily prevent us from designing a polynomial-time
algorithm that finds a pure Nash equilibrium if it exists. How-
ever, we now show that the simple question (dubbed PURE

NASH CONNECTIVITY WITH TRIANGLE INEQUALITY) whether
a given CONNECTIVITY GAME has a pure Nash equilibrium
is NP-hard to answer, if the triangle inequality holds on the
input graph.3 The corresponding problem for purely geomet-
ric graphs (with embeddings in the plane) remains open. We
show this hardness result by reducing MONOTONE 1-IN-3 SAT-
ISFIABILITY to PURE NASH CONNECTIVITY WITH TRIANGLE

INEQUALITY.

Definition 1. The problem MONOTONE 1-IN-3 SATISFIABIL-
ITY consists of finding a truth assignment to the variables of a
given formula with three positive literals in each clause such
that exactly one literal in each clause is true.

MONOTONE 1-IN-3 SATISFIABILITY is NP-hard [11].

3Note that in this case we assume that the graph is a complete graph, with the
edges satisfying the triangle inequality. In case an edge (u, v) is not present,
a new edge of length equal to the length of the shortest path from u to v can
be added.
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Lemma 7. PURE NASH CONNECTIVITY WITH TRIANGLE IN-
EQUALITY is NP-hard.

The proof of Lemma 7 is given in the appendix.

5. The reachability game

Existence of Nash equilibria. The REACHABILITY GAME

does not necessarily have a pure Nash equilibrium, even for
a 1-dimensional instance. The simple example of figure 4 is
one such instance. Multiple vertices are located at the same
point (e.g. points 1, 3, 4) in this figure. This is only for the
purpose of keeping the example simple; the colocated points
can be perturbed slightly to be located very close to each
other.

Observation 4. The REACHABILITY GAME instance in fig-
ure 4 with α = 1 does not have a pure Nash equilibrium.

The proof is given in the appendix.

The REACHABILITY GAME for Random Points in the Plane.
In this section, we show that an approximate Nash equilibrium
always exists for a random distribution of points in the plane,
as described in Section 2.

Lemma 8. For an instanceP of random points in the plane,
the REACHABILITY GAME with a fixed α has a 1 + o(1)-
approximate Nash equilibrium, with high probability.

Proof: The proof is by constructing a radius vector r̄ that
is an approximate Nash equilibrium. The graph G(V, r̄) will
actually be strongly connected.

Partition the region A into square regions of dimensions log
n × log n: there are n/log2 n such regions. Within each such
region, choose one node arbitrarily as a leader for that region.
The leader of each region chooses a radius of 4 log n, so
that it is connected to the leaders of the regions immediately
adjacent to it. All the other points in each region choose a
radius in the range [0, log n] so that they get connected to the
leader of that region. Let r̄ be the resulting radius vector. It
is easy to check that G(V, r̄) is strongly connected, and each
point has utility at least n − (4 log n)α . The maximum utility
of any point is n, and therefore this choice is a n

n−(4 log n)α = 1
+ o(1)-approximate Nash equilibrium.

a a/2 a/2

2 31 4

Figure 4. Instance of REACHABILITY GAME with no pure Nash equilibrium:
there are a/2−1 vertices located together at points 1 and 3, three vertices at
point 4 and a single vertex at point 2. The distances between the points are
as shown. The value a is any number larger than 4.

6. Extensions for wireless networks with directional
antennas

In this section, we study the STRONG CONNECTIVITY GAME

and the CONNECTIVITY GAME for wireless networks with
directional antennas. We denote by N′(v) the set of neighbors
of node v in the input graph H. Recall that we require the input
graph H to have a direct link from each source to its link, thus
in the STRONG CONNECTIVITY GAME it is a complete graph.
In a directional antenna network, a strategy of a node v is to
choose a set of nodes N(v) ⊂ N′(v) and set up a directional
antenna to each node in this set. The strategy vector N̄ induces
a graph G(V, E) such that there is a directed edge (u, v) ∈ E if
v ∈ N(u). G(V, N̄ ) then denotes the graph induced by N̄ . The
cost a node v incurs are C(v) = ∑

v′∈N(v) w{v,v′} for strategy
N(v). We can then define the cost of a strategy vector as C(N̄ )
= ∑

v
∑

v′∈N(v) w{v,v′}. The utility function remains as defined
for the STRONG CONNECTIVITY GAME and the CONNECTIVITY

GAME.

6.1. The DIRECTIONAL ANTENNA STRONG CONNECTIVITY

GAME

Existence of Nash equilibria. In the DIRECTIONAL AN-
TENNA STRONG CONNECTIVITY GAME every instance has a
Nash equilibrium, which follows from the following lemma.

Lemma 9. Let G(V, E) be a directed cycle in H(V, E′, w̄)
that visits each node in V exactly once. For every edge (u,
v) ∈ E, let v ∈ N(u). Then the neighbor vector N̄ constitutes
a Nash equilibrium of the DIRECTIONAL ANTENNA STRONG

CONNECTIVITY GAME.

Proof: Every vertex reaches every other vertex, therefore
there is no vertex with an incentive to reach an additional
node, or a node that is further away. Moreover, no vertex can
unilaterally decrease its cost, because using a shorter edge
would not allow it to reach all other nodes. �

Finding a Nash equilibrium. Clearly, every permutation
of the nodes yields a cycle and hence a Nash equilibrium
for this game. However, these are not the only equilibria
that exist and finding cycles does not necessarily happen in
an incentive-compatible manner. The following algorithm is
incentive-compatible and finds a Nash equilibrium for every
instance of the DIRECTIONAL ANTENNA STRONG CONNECTIV-
ITY GAME. The resulting Nash equilibrium is not necessarily a
cycle.

Local improvement algorithm for DIRECTIONAL ANTENNA

STRONG CONNECTIVITY GAME

1. Start with N̄ (0) = N̄ such that every node has a direct link
to every other node. More formally, for each node v, let
N(v) = {u ∈ V, u 
= v}.

2. Order the vertices arbitrarily as v1, . . . , vn and consider
the vertices in this order.
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3. In step i = 1, . . . , n−1, the neighbor vector is N̄ (i−1)

initially. Vertex vi keeps the smallest link such that it still
reaches all other vertices in G(V, N̄ (i−1)) and stops paying
for all others. N̄ (i) denotes the neighbor vector after vi

updates its neighbors.
4. In step n, vertex vn stops paying for all links except

the ones pointing to nodes that would otherwise have
indegree 0.

Lemma 10. The above algorithm leads to a Nash equilib-
rium of the DIRECTIONAL ANTENNA STRONG CONNECTIVITY

GAME.

Proof: We will first prove that the transmission graph re-
mains strongly connected throughout the algorithm, which
implies that no vertex ever has an incentive to pay a higher
cost. In a second step we will prove that no vertex can de-
crease its cost further while still reaching all other nodes.

To prove that the transmission graph remains strongly con-
nected throughout the algorithm, let us first consider steps i
= 1, . . . , n − 1. In each of these steps, vertex vi chooses the
shortest link such that it can still reach all other nodes. At
least one such link always exists, namely the link to vertex
vn, which still has a link to all nodes. Therefore the graph
remains strongly connected until step n − 1. In step n, vertex
vn keeps all the links to nodes that have indegree 0 otherwise.
This allows vertex vn to reach every node. If there is a node v
that vn does not reach directly, v has an incoming edge from
some node v′. If vn does not reach v′ directly either, we can
keep tracing back incoming edges until we arrive at a node
u to which vn has a direct link. It is not possible that we en-
counter node v again before we get to such a node u, since
that would imply that v does not reach vn.

Now let us prove that at the end of the algorithm, no node
has an incentive to further decrease its cost. We will prove that
in each step, a vertex decreases its cost as much as possible.
As we only delete edges in the process of the algorithm and
never establish new ones, a node will not develop an incentive
to further decrease its cost after its turn.

For steps 1, . . . , n − 1, we have to prove that the smallest
one link that allows a vertex to reach all other nodes cannot
be replaced by a set of links with even smaller cost. The proof
will be by contradiction. Let e be the smallest link that vertex
v can use to reach all other nodes, and let f, f ′, . . . be a set of
links, that also allow v to reach all other nodes and for which
it further holds that wf . . . wf ′ + . . . < we. At least one of the
endvertices of f, f ′, . . . must be able to reach the endvertex of
e, which we call v′ (see figure 5). Let us say, without loss of
generality, that this is the endvertex of f. But we know that
using e allows v to reach all other nodes, therefore v′ must be
able to reach all nodes, which implies that edge f is sufficient
to replace e. Since wf < we, this contradicts our assumptions
that e is the shortest single edge that allows v to reach all
other nodes.

Figure 5. If edge e is the shortest single edge that allows vertex v to reach
all other nodes, than no set of edges f, f ′, f ′′ of shorter length exists, that
could replace e.

Finally, it is easy to see that vertex vn cannot decrease its
cost, since the only way to reach a node with indegree 0 is to
establish a link to this node.

Quality of Nash equilibria

Lemma 11. Let N̄ be a neighbor vector that constitutes
a Nash equilibrium in the DIRECTIONAL ANTENNA STRONG

CONNECTIVITY GAME and let M̄ be an optimal neighbor
assignment. Then C(N̄ )/C(M̄) ≤ 2n, if the edge lengths satisfy
the triangle inequality.

Proof: Let wmax = max {we, e ∈ E′}. Let us first prove
the following claim: C(N̄ ) ≤ (2n − 2) wmax. Fix an arbitrary
vertex v0. Since v0 has a path to every other vertex in G(V, N̄ ),
we can construct a rooted outtree T ⊂ G(V, N̄ ), rooted at v0:
v0 has a directed path of shortest hop length to all other nodes.
There are n − 1 edges in T, therefore C(v0) ≤ C(T) ≤ (n − 1)
wmax. All the remaining nodes would reach every other node
if they established an edge to the root. Therefore, the costs of
any node v 
= v0 will be at most C(v) = w{v, v0}≤ wmax. Sum-
ming up the individual costs proves the claim. Since the tri-
angle inequality holds in the input graph H(V, E′, w̄), C(M̄)≥
wmax. �

We have not found an example to show that the above
is tight. However, the following instance has a ratio of n/2:
Form two groups of vertices, each consisting of n/2 of the
nodes. The two groups are far apart from each other, but the
distances of the nodes within one group are very small. In this
example, the social optimum has cost 2wmax. The worst Nash
equilibrium is a cycle that alternatively visits nodes from each
of the groups. It has cost nwmax.

6.2. The DIRECTIONAL ANTENNA CONNECTIVITY GAME

Existence of Nash equilibria

Lemma 12. There is an instance of the DIRECTIONAL AN-
TENNA CONNECTIVITY GAME for which no pure Nash equi-
librium exists.

The proof is given in the appendix.

Quality of Nash equilibria. An immediate conclusion from
Lemma 12 is that the social optimum need not necessarily be
a Nash equilibrium in the DIRECTIONAL ANTENNA CONNEC-
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Figure 6. The upper figure shows the worst case Nash equilibrium for the
given instance of the DIRECTIONAL ANTENNA CONNECTIVITY GAME. The
lower figure shows the social optimum. The cost of the Nash is O(j) times
higher than the cost of the social optimum.

TIVITY GAME. However, in all instances where Nash equilib-
ria exist, we can compare their cost to the cost of the social
optimum, and this ratio does not depend on the interpoint
distances, but only on the number of source-sink pairs.

Lemma 13. Any Nash equilibrium for the DIRECTIONAL

ANTENNA CONNECTIVITY GAME has cost at most j times the
optimal cost, where j is the number of source-sink pairs (si, ti),
if the edge lengths satisfy the triangle inequality.

Proof: Let us denote by v(si) and v(ti) the vertices si and ti
are located on, respectively, and let w′

max = max {w{v(si),v(ti)}
| 1≤ i ≤ j}. Let M̄ be an optimal neighbor vector and N̄ be
a neighbor vector that constitutes a Nash equilibrium respec-
tively. Then C(M̄) ≥ w′

max by triangle inequality. Further,
C(N̄ ) ≤ jw′

max, since a Nash equilibrium can cost at most
as much as when every source has a direct link to its target.
Hence C(N̄ ) ≤ jC(M̄). �

The above bound is tight, as one can see with in the exam-
ple given in figure 6.

7. Extensions for wireline networks

In order to study the STRONG CONNECTIVITY GAME and the
CONNECTIVITY GAME for wireline networks, we adapt our
games as follows. We again denote by N′(v) the set of neigh-
bors of node v in the input graph H and require H to have a
direct link between each source and its sink. A strategy of a
node v is to choose a set of nodes N(v) ⊂ N′(v) and establish
(or pay) a wire to each node in this set. The strategy vector
N̄ induces a graph G(V, E) such that there is a bidirectional
(or undirected) edge {u, v} ∈ E if either u ∈ N(v) or v ∈ N(u).
G(V, N̄ ) then denotes the graph induced by N̄ . The cost a
node v incurs are C(v) = ∑

v′εN(v) w{v,v′} for strategy N(v). We
can then define the cost of a strategy vector as C(N̄ ) = ∑

v∑
v′∈N(v) w{v,v′}. The utility function remains as defined for

the STRONG CONNECTIVITY GAME and the CONNECTIVITY

GAME.

7.1. The WIRELINE STRONG CONNECTIVITY GAME

In the WIRELINE STRONG CONNECTIVITY GAME, every Nash
equilibrium is a spanning tree, but not every spanning tree

Figure 7. Three examples for the WIRELINE STRONG CONNECTIVITY GAME.
A box by a node on an edge indicates, which node will pay for the wire.

is a Nash equilibrium. The first example in figure 7 shows a
spanning tree that is not a Nash equilibrium: node a would
increase its utility function, if it replaced its wire to node b
by a wire to node d.

Existence of Nash equilibria. Every instance of the WIRE-
LINE STRONG CONNECTIVITY GAME has a Nash equilibrium.
This follows from the following lemma.

Lemma 14. Let G(V, E) be a minimum weight spanning
tree of the input graph H(V, E′, w̄). For every edge (u, v)ε E,
let either u ε N(v) or vε N(u) (but never both). Then the wire
vector N̄ constitutes a Nash equilibrium of the WIRELINE

STRONG CONNECTIVITY GAME.

Proof: The graph G(V, E) is connected, therefore no vertex
has an incentive to pay for more or longer edges. Suppose
node v has an incentive to cease paying for a wire e. Since
G(V, E) is a tree, this implies that v must want to pay for
another wire e′ instead (otherwise v would not reach every
other node anymore) which is shorter than e and still allows
v to reach all other nodes. But if such an edge e′ exists, G(V,
E) is not a minimum weight spanning tree. �

Remark 1. Not every Nash equilibrium must yield a trans-
mission graph that is a minimum weight spanning tree. The
second example in figure 7 shows a Nash equilibrium which
does not yield a minimum weight spanning tree. The third
example in figure 7 shows, for the same instance, a Nash
equilibrium which yields a minimum weight spanning tree.

Finding a Nash equilibrium. We can use any algorithm that
finds a minimum weight spanning tree in order to find a
Nash equilibrium of the WIRELINE STRONG CONNECTIVITY

GAME. However, these algorithms are usually not incentive-
compatible.

The following is an incentive-compatible algorithm that
finds a Nash equilibrium for this game. We start with a neigh-
bor vector, where every node pays a wire to every other node.
This implies a fully connected transmission graph, where ev-
ery wire is paid for twice, once by each of its endnodes. Then
one after another the vertices get a chance to improve their
utility function, which means they cease paying for wires
that are either already paid for, or that they do not need in
order to reach all other nodes. This algorithm always ends in
a Nash equilibrium. In particular, it always ends in the Nash
equilibrium, in which the node that gets to update its wires
last, pays for a link to each of the other nodes, and none of
the other nodes pay for any links. Therefore, the node that
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Figure 8. An instance of the WIRELINE CONNECTIVITY GAME without Nash
equilibrium.

gets to change wires last, has the burden of the total resulting
cost.
Quality of Nash equilibria

Lemma 15. Let N̄ be a neighbor vector that constitutes a
Nash equilibrium in the WIRELINE STRONG CONNECTIVITY

GAME and let M̄ be an optimal neighbor assignment. Further
let wmin = min {we, e ∈ E′} and wmax = max {we, e ∈ E′}. If
the edge lengths satisfy the triangle inequality,

C(N̄ )/C(M̄) ≤ min{wmax/wmin, n − 1}.
Proof: If N̄ is a Nash equilibrium, then G(V, N̄ ) must be a
tree. Thus C(N̄ ) ≤ (n − 1) wmax. For M̄ to be optimal, G(V,
M̄) must have at least n − 1 edges, otherwise not every node
would be able to reach every other node. This implies C(M̄) ≥
(n − 1) wmin, which proves C(N̄ )/C(M̄) ≤ wmax/wmin. Since
the triangle inequality holds for the input graph, we must
also have that C(M̄) = ∑

e∈G(V,M) we ≥ wmax, which proves
C(N̄ )/C(M̄) ≤ n−1.

7.2. The WIRELINE CONNECTIVITY GAME

Existence of Nash equilibria. Figure 8 shows an instance
without Nash equilibrium for the WIRELINE CONNECTIVITY

GAME.

Observation 5. No pure Nash equilibrium exists for the
instance of the WIRELINE CONNECTIVITY GAME given in
figure 8.

Proof: Obviously, no neighbor vector N̄ that implies a
transmission graph G(N̄ , V) with zero, one or three links can
be a Nash equilibrium. It is easy to check, that none of the six
possibilities of neighbor vectors that lead to a transmission
graph with two edges, constitute a Nash equilibrium either.�

Quality of Nash equilibria. Comparing the cost of a Nash
equilibrium in case it exists to the cost of a social optimum,
yields the same result as we have found in Lemma 13 for the
DIRECTIONAL ANTENNA CONNECTIVITY GAME.

Lemma 16. Any Nash equilibrium for the WIRELINE CON-
NECTIVITY GAME has cost at most j times the optimal cost,
where j is the number of source-sink pairs (si, ti).

That this bound is also tight can be shown with an example
similar to the one in figure 6.

8. Conclusions and open problems

We studied topology control games arising in ad hoc networks
in the presence of selfish, non-cooperative agents in this paper
and study the existence of Nash equilibria, their quality and
algorithms for computing them. Our work motivates further
game theoretic study of protocols for ad hoc networks. Some
of the interesting open questions are the following.

1. Intermediate nodes in the games we study have to be paid
by the source for forwarding each message. Design mech-
anisms or pricing schemes that include this price.

2. Develop a topology control protocol that is incentive-
compatible.

3. Our work leaves a multitude of obvious problems open,
among them: Is it NP-hard to decide whether an instance
of the REACHABILITY GAME has a Nash equilibrium? Can
the concept of k-connectivity be extended to the directional
antenna and the wireline game? Are there instances where
no approximate Nash equilibria exist in the DIRECTIONAL

ANTENNA and WIRELINE CONNECTIVITY GAME?

Appendix

Proof of Lemma 7: Given a MONOTONE 1-IN-3 SATISFIA-
BILITY instance I consisting of variables x1, . . . , xn and m
clauses with each clause being a 3-tuple of positive literals,
we construct a PURE NASH CONNECTIVITY WITH TRIANGLE

INEQUALITY instance I′ as follows: For each variable xi, we
create a source node xi in the graph that we call a variable
node. We insert an edge of weight 1 between two nodes xi

and xj, if there exists a clause in which both variables appear
as positive literals.

Figure 9 shows a clause gadget: for each clause c = (xi,
xj, xk), we create three nodes t ci , t cj , tck , where t ci is a sink
node that source node xi must reach, accordingly for tcj and tck.
Edges of weight 2 are inserted between the three source nodes
xi, xj, xk and the three sink nodes t ci , t cj , tck . We call the part of
the clause gadget containing these six nodes the upper part.

In contrast, the lower part of the clause gadget consists
of nine nodes that are created individually for each clause.
The six nodes s1, s2, s3, t1, t2, t3 (see figure 9) form exactly
the same graph as the one given as an example of a graph
without Nash equilibrium in figure 2 with source-sink pairs
(s1, t1), (s2, t2), and (s3, t3). In addition, each of the sources
s1, s2, s3 needs to reach a second sink node t ′1, t

′
2, t

′
3. These

additional sink nodes are connected to their corresponding
source nodes by edges of length 2. The upper and the lower
part of the clause gadget are connected through edges (xi,
s1), (xi, s2), (xj, s2), (xj, s3), (xk, s3), (xk, s1) of length 1 and
through edges (xi, t ′1), (xi, t ′2), (xj, t ′2), (xj, t ′3), (xk, t ′3), (xk,
t ′1) of length 2.4 This completes the description of the PURE

4The nine nodes of the lower part of the clause gadget would be more aptly
named sc

1, sc
2, sc

3, tc1 , tc2 , tc3 , t ′c1 , t ′c2 , t ′c3 , as they are individual to clause c,
but for ease of presentation, we have chosen to drop the c-index.
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Figure 9. Clause gadget: source-sink relationships are indicated by arrows;
dashed lines denote edges with weight 1, solid lines denote edges with
weight 2.

NASH CONNECTIVITY WITH TRIANGLE INEQUALITY instance
I′. As we only have edge weights 1 and 2, our graph satisfies
the triangle inequality. We have created one node for each
variable and 12 nodes for each clause, giving a total number
of n + 12m nodes, thus the reduction is polynomial. The key
idea of the construction is that the lower part of each clause
gadget will only have a Nash equilibrium if exactly one of
the variable nodes in the upper part sets its radius to 2 and the
other two variable nodes set their radii to 1.

To be more precise, if a “1-in-3” satisfying truth assign-
ment exists for the variables of the MONOTONE 1-IN-3 SATIS-
FIABILITY instance I, we obtain a radius vector for the nodes
of the PURE NASH CONNECTIVITY WITH TRIANGLE INEQUAL-
ITY instance I′ that constitutes a Nash equilibrium by setting
the radii of exactly those variable nodes xi in I′ to 2, of which
the corresponding variables xi in I are set to true in the truth
assignment. All other variable nodes set their radius to 1. For
better illustration, assume w.l.o.g. (due to the symmetry of
the construction) that variables xi and xj are set to false, while
variable xk is set to true in the assignment, thus the clause c
= (xi, xj, xk) is “1-in-3” satisfied, and thus the radii of nodes
xi and xj are 1 and the radius of node xk is 2. Thus, variable
node xk reaches its sink t ck directly and nodes xi and xk reach
their sinks t ci and t cj via node xk. This radii assignment also
forces a radius assignment for the sources on the lower part
of the clause gadget: source s2 has to set its radius to 2 in
order to reach sink t ′2 as nodes xi and xj have both set their
radii to 1 and thus do not reach t ′2; this makes it sufficient for

source s3 to set its radius to 1 as it can reach sink t3 via s2

and sink t ′2 via upper part node xk; this in turn forces s1 to
set its radius to 2 as it cannot reach t1 otherwise. To see that
this radius vector constitutes a Nash equilibrium, first note
that all sources reach their sinks and thus have no incentive
to increase their radii. Similarly, each source with radius set
to 2 would lose the connection to at least one of its sinks if it
reduced its radius to 1. Thus, we have found a radius vector
that constitutes a Nash equilibrium.

We also need to show that any Nash equilibrium of I′

induces a “1-in-3” satisfying truth assignment of the variables
of I. Assume we are given a radii assignment for all sources
in I that constitutes a Nash equilibrium. We first note that
no source will choose a radius larger than 2 in any Nash
equilibrium as it will directly reach all its sinks with a radius
of 2, neither will a source set its radius to less than 1, as it
will not reach any other node with such a small radius. Let us
consider the clause gadget representing clause c = (xi, xj, xk).
We distinguish four cases of radii assignment for the three
source nodes s1, s2, s3 as they are in the lower part of the
clause gadget. For simplicity, let (2, 1, 1) denote the radius
of source s1 set to 2 and the radii of the other two sources s2

and s3 set to 1; accordingly for other radii choices:

• Radii vector (1, 1, 1): In this case, none of the sinks t1,
t2, t3 is reached by its source, thus the radius assignment
cannot be a Nash equilibrium.

• Radii vector (2, 1, 1): In this case, sink t3 is not reached
by its source, thus this cannot be a Nash equilibrium. The
radii vectors (1, 2, 1) and (1, 1, 2) are equivalent due to
symmetry.

• Radii vector (2, 2, 2): In this case, all variable nodes xi, xj,
xk of the clause must have set their radius to 1 as at least two
of the sources s1, s2, s3 would have an incentive to reduce
their radius otherwise. However, with the radii of xi, xj, xk

all set to 1, sinks t c1 , t c2 , t c3 in the upper part of the clause will
not be reached by their sources. Thus, this cannot be a Nash
equilibrium.

• Radii vector (2, 2, 1): In this case, either xj or xk must
have radius 2 as sink t′3 would not be reached otherwise.
If xj had its radius set to 2, then source s2 would have an
incentive to reduce its radius to 1, independent of the radii
of xi and xk. Similarly, if xi had its radius set to 2, then
source s2 would have an incentive to reduce its radius to 1,
independent of the radii of xj and xk. However, if only xk

has its radius set to 2 and xi and xj set to 1, then we have
a valid Nash equilibrium, from which we can easily read
off a truth assignment for the variables: xi and xj are false,
xk is true. We can argue for the radii vectors (2, 1, 2) and
(1, 2, 2) similarly.

Thus, the a radii vector can only be a Nash equilibrium, if
it has exactly one variable node in each clause set to radius
2 and the other two variable nodes set to radius 1. From this,
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Figure 10. An instance of the DIRECTIONAL ANTENNA CONNECTIVITY GAME without Nash equilibrium.

we can assign a “1-in-3” satisfying truth assignment to the
variables of I immediately. This completes our proof. �

Proof of Observation 4: Note that in any Nash equilibrium,
only one of a set of colocated vertices can have positive
radius – all the other vertices can keep their radius 0 without
affecting their utility. In what follows, we use r3 (r1, r4, re-
spectively) to denote the radius of the vertex located at point
3 (1, 4, respectively) with the largest radius, keeping in mind
that the other vertices at point 3 (1, 4, respectively) have
radius 0.

The total number of vertices in this instance, n is a + 2.
Therefore, no vertex has radius more than a + 1. Also, r1 =
0, since U1(0, σ−1) = a/2 − 1, U1(x, σ−1) = a / 2 − 1 − x,
for any x < a and U1(a, σ−1) ≤ 2, for any choice σ−1 of radii
by vertices at points 2, 3, 4. Further, r4 has no influence on
the utilities of vertices at points 2 or 3, namely U2(), U3():
vertices at these points cannot reach any more vertices if r4 >

0. Therefore, U2() and U3() depend only on r2 and r3, and are
denoted by U2(r2, r3) and U3(r2, r3) in the discussion below.

The observation now follows from the following four im-
plications.

1. r3 < a/2 ⇒ r2 = a: If r3 < a/2, vertices at point 3 do not
reach vertices at point 4. Therefore, U2(0, r3) = 1, U2(a/2,
r3) = 0 and U2(a, r3) = 2, which implies r2 = a.

2. r3 ≥ a/2 ⇒ r2 = a/2: In this case, U2(a/2, a/2) = a/2 +
3 − a/2 = 3 > U2(a, a/2) and so r2 = a/2.

3. r2 = a ⇒ r3 = a/2: In this case, U3(a, a/2) = a + 2
− a/2 = a/2 + 2 > U3(a, 0) = a/2 − 1, and so r3 =
a/2.

4. r2 < a ⇒ r3 = 0: In this case, the vertex at point 2
does not reach the vertices at point 1. As a result, U3(r2,
a/2) = a/2 + 3 − a/2 < U3(r2, 0) = a/2−1, and so r3 =
0.

Suppose, r3 < a/2. Then implications (1) and (3) lead
to a contradiction. Suppose r3 ≥ a/2. Then implications (2)
and (4) lead to a contradiction.

Proof of Lemma 12: Assume the instance in figure 10 does
have a Nash equilibrium. Note that any node that needs to
connect to another node, can do this either by establishing a
direct link to its target, or by using any node that is closer
than its target as an intermediate node. Some nodes need to
connect to more than one target. In that case, the node will
determine the set of links that is shortest in sum and allows it
to reach all its targets.

Note that vertices 10, 11, and 12 do not need to connect to
any node. Thus in any Nash equilibrium, those vertices have
no outgoing links.

Vertex 1 needs to connect to vertex 10. Since vertex 10 is
also its closest neighbor, vertex 1 will establish a direct link
to vertex 10 in any Nash equilibrium. Equivalently, vertex 2
will establish a direct link to vertex 11, which is its only target
as well as its closest neighbor.
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Vertex 3 needs to reach vertex 11 as well as vertex 12.
In order to reach vertex 12, vertex 3 could use 11, 2, 1, or
10 as intermediate nodes. We have already shown though,
that vertices 10 and 11 never have an outgoing edge in a
Nash equilibrium, and further that the only outgoing edges
of vertices 1 and 2 go to 10 and 11 respectively. Thus, none
of this nodes can be used as an intermediate node to reach
vertex 12 and therefore vertex 3 must establish a direct link
to vertex 12. Since vertex 12 does not have any outgoing
links in a Nash equilibrium, the established link from vertex
3 to vertex 12 will not help vertex 3 to reach its second target,
vertex 11. Hence it will establish a second direct link to vertex
11, which is its closest neighbor.

Let us call the vertices 4–9 the outer vertices, and the
remaining ones the inner vertices. We have established all the
links for the inner vertices. All those vertices will establish
those links in any Nash equilibrium, independent of the links
of the outer vertices. Note that none of the inner vertices
established a link to an outer vertex.

Vertices 4, 5, and 6 need to reach vertices 12, 10, and
11 respectively. Vertex 4 and 5 will either reach their target
directly, or via their closest neighbor 9 and 8 respectively,
since those are the only nodes that are closer to them than
their target nodes. Vertex 6 can reach its target either via the
vertex 3 which has a link to vertex 11, or via vertex 7, which
is its closest neighbor. Thus each of the vertices 4, 5, and 6
have two possibilities to reach its targets. We cannot rule out
one of this two possibilities at this point.

Now let us consider vertex 7, which needs to reach vertex
5. Its closest neighbor is vertex 6, but vertex 6 either has a
link to an inner vertex, which never reaches any outer vertex,
or a link back to 7 itself. Thus vertex 6 cannot be used as
an intermediate link. None of the inner vertices can be used
as an intermediate link, so the next closest vertex is vertex 5
itself and 7 establishes a direct link to vertex 5.

Using the same arguments, vertex 8 has to establish a direct
link to vertex 4, and vertex 9 has to establish a direct link to
vertex 6. But vertices 8 and 9 also need to connect to vertices
2 and 1 respectively. In order for vertex 8 to reach vertex 2,
it could either use the direct link to vertex 4, or establish a
link to one of the nodes 5, 10, or 1. Node 10 does not have
any outgoing links though, and node 1 only leads back to 10.
Node 5 leads to 10 as well, or back to 8. Therefore node 8
could either use the existing link, or establish a direct link to
2. In order for vertex 9 to reach vertex 1, it could also use the
existing link to node 6 or establish a link to one of the nodes
4, 12, 3, or 1. Again we can rule out nodes 4, 12, and 3 as
intermediate links. Now that we have listed all the possible
links for all the nodes, we find that in any Nash equilibrium,
every node but node 8 never has an incentive to establish a
link to node 2. Therefore node 8 cannot use its existing link
to node 4 in order to reach 2. Similarly, no node but node 9
ever has an incentive to establish a link to node 1. Therefore
node 8 and node 9 will have to establish a direct link to
node 2 and 1 respectively. The two links of vertices 8 and 9
cannot be replaced by any single link to an intermediate node,

because no other vertex will ever have a link to any of these
nodes.

Finally we have established the link for all nodes except
node 4, 5, and 6. For those nodes the following implications
hold.

4 has link to 9 ⇒ 5 has link to 8.
5 has link to 8 ⇒ 6 has link to 7.
6 has link to 7 ⇒ 4 has link to 12.
4 has link to 12 ⇒ 5 has link to 10.
5 has link to 10 ⇒ 6 has link to 3.
6 has link to 3 ⇒ 4 has link to 9.
These implications lead to a contradiction, and therefore,

this instance does not have a Nash equilibrium for the DIREC-
TIONAL ANTENNA CONNECTIVITY GAME.
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