Skip to main content
Log in

DPS: An Architecture for VBR Scheduling in IEEE 802.11e HCCA Networks with Multiple Access Points

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Recent advances in 802.11 Wireless Local Area Networks (WLANs) have been focused on introducing Quality of Service (QoS) in their performance through the adoption of 802.11e. The Hybrid Controlled Channel Access (HCCA) has been proposed as the mechanism to provide the means for guaranteed QoS in networks controlled by a single Access Point (AP). Moreover, scheduling algorithms have been developed allowing efficient scheduling of Variable Bit Rate (VBR) traffic flows. However, little research may be found regarding the problem of applying HCCA on networks with multiple APs. In this paper, various VBR scheduling mechanisms and methods for multi—AP HCCA are presented and evaluated. In addition, this paper introduces the Dynamic Parallel Scheduler (DPS), a novel HCCA scheduling algorithm for VBR traffic among multiple APs that takes advantage of the rate variability and spatial reuse. DPS’s performance evaluation shows that the proposed scheme achieves improved performance in terms of delay, throughput and packet loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ni Q, Romdhani L, Turletti T (2004) A survey of QoS enhancements for IEEE 802.11 wireless LAN. Wirel Commun Mob Comput 4(5):547–566 doi:10.1002/wcm.196

    Article  Google Scholar 

  2. Grilo A, Macedo M Nunes M (2003) A scheduling algorithm for QoS support in IEEE 802.11 networks. IEEE Wireless Commun 10(3):36–43 doi:10.1109/MWC.2003.1209594

    Article  Google Scholar 

  3. Ansel P, Ni Q, Turletti T (2006) FHCF: A simple and efficient scheduling scheme for IEEE 802.11e wireless LAN. Mobile Netw Appl 11(3):391–403 doi:10.1007/s11036-006-5191-z

    Article  Google Scholar 

  4. Skyrianoglou D, Passas N, Salkintzis AK (2006) ARROW: An efficient traffic scheduling algorithm for IEEE 802.11e HCCA. IEEE Transactions on Wireless Communications 5(12):3558–3567 doi:10.1109/TWC.2006.256978

    Article  Google Scholar 

  5. Fallah YP, Alnuweiri H (2007) Hybrid polling and contention access scheduling in IEEE 802.11e WLANs. J Parallel Distrib Comput 67(2):242–256 doi:10.1016/j.jpdc.2006.07.003

    Article  MATH  Google Scholar 

  6. Yang L (2004) P-HCCA: A new scheme for real-time traffic with QoS in IEEE 802.11e based networks. in APAN Network Research Workshop

  7. Heo J, Kim N, Kwon WH (2007) An efficient scheduling scheme based on fuzzy prediction for IEEE 802.11e WLAN. In International Conference on Control, Automation and Systems, ICCAS ‘07. Seoul, Korea

    Google Scholar 

  8. Noh BM, Suzuki T, Tasaka S (2007) Packet scheduling for user-level QoS guarantee in audio-video transmission by IEEE 802.11e HCCA. In IEEE TENCON, Taipei, Taiwan

    Google Scholar 

  9. Fan YL, Huang CY, Hong YR (2005) Timer based scheduling control algorithm in WLAN for real-time services. In IEEE International Symposium on Circuits and Systems, ISCAS, Kobe, Japan

    Google Scholar 

  10. Son J, Lee I-G, Yoo H-J, Park S-C (2005) An effective polling scheme for IEEE 802.11e. IEICE Trans Commun 88-B(12):4690–4693 E (Norwalk, Conn.)

    Article  Google Scholar 

  11. Lim KM, Lee KY, Kim KS, Joo S.-S (2007) Traffic aware HCCA scheduling for the IEEE 802.11e wireless LAN. In IEEE International Conference on Multimedia and Expo, ICME, Beijing, China

    Google Scholar 

  12. Garg P, Doshi R, Greene R, Baker MA, Malek MA, Cheng X (2003) Using IEEE 802.11e MAC for QoS over wireless. In IEEE International Performance, Computing, and Communications Conference. Phoenix, Arizona, USA

    Google Scholar 

  13. Vergados DD, Vergados DJ (2004) Synchronization of multiple access points in the IEEE 802.11 point coordination function. In IEEE 60th Vehicular Technology Conference, VTC2004-Fall. LA, USA 2:1073–1077

  14. Bejerano Y, Bhatia RS (2006) MiFi: A framework for fairness and QoS assurance for current IEEE 802.11 networks with multiple access points. IEEE/ACM Trans Netw 14(4):849–862

    Article  Google Scholar 

  15. Mangold S, Sunghyun C, Hiertz GR, Klein OA, Walke BA (2003) Analysis of IEEE 802.11e for QoS support in wireless LANs. IEEE Wireless Communications 10(6):40–50 doi:10.1109/MWC.2003.1265851

    Article  Google Scholar 

  16. Bianchi G, Tinnirello I, Scalia L (2005) Understanding 802.11e contention-based prioritization mechanisms and their coexistence with legacy 802.11 stations. IEEE Netw 19(4):28–34 doi:10.1109/MNET.2005.1470680

    Article  Google Scholar 

  17. Chen D, Gu D, Zbang J (2004) Supporting real-time traffic with QoS in IEEE 802.11e based home networks. In First IEEE Consumer Communications and Networking Conference, 2004. Las Vegas, Nevada, USA

    Google Scholar 

  18. del Prado Pavon J, Shankar SN (2004) Impact of frame size, number of stations and mobility on the throughput performance of IEEE 802.11e. In IEEE Wireless Communications and Networking Conference, WCNC, Atlanta, Georgia, USA

    Google Scholar 

  19. Grilo A, Nunes M (2002) Performance evaluation of IEEE 802.11e. In The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, Beijing, China

    Google Scholar 

  20. Fattah H, Leung C (2002) An overview of scheduling algorithms in wireless multimedia networks. IEEE Wireless Communications 9(5):76–83 doi:10.1109/MWC.2002.1043857

    Article  Google Scholar 

  21. Cowling J, Selvakennedy S (2004) A detailed investigation of the IEEE 802.11e HCF reference scheduler for VBR traffic. In IEEE International Conference on Computer Communications and Networks, ICCCN, Chicago, IL USA

    Google Scholar 

  22. Yang L (2005) Enhanced HCCA for real-time traffic with QoS in IEEE 802.11e based networks. In IEE International Workshop on Intelligent Environments (IE ‘05), Colchester, UK

    Google Scholar 

  23. Khedkar P, Keshav S (1992) Fuzzy prediction of timeseries. in Proc. IEEE Conference on Fuzzy Systems-92

  24. Video traces for network performance evaluation. http://trace.eas.asu.edu/tracemain.html. Accessed 10 June 2008.

  25. Jain R, Chiu D, Haw W (1984) A quantitative measure of fairness and discrimination for resource allocation in shared systems, DEC Technical Report TR-301, Digital Equipment Corporation.

Download references

Acknowledgement

This paper is part of the 03ED485 - “Design and Development Models for QoS Provisioning in Wireless Broadband Networks” research project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds (20% from the Greek Ministry of Development-General Secretariat of Research and Technology and 80% from E.U.-European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios D. Vergados.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergados, D.J., Vergados, D.D. & Douligeris, C. DPS: An Architecture for VBR Scheduling in IEEE 802.11e HCCA Networks with Multiple Access Points. Mobile Netw Appl 14, 744–759 (2009). https://doi.org/10.1007/s11036-008-0126-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-008-0126-5

Keywords

Navigation