Skip to main content
Log in

Adaptive Information Coding for Secure and Reliable Wireless Telesurgery Communications

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Telesurgical Robot Systems (TRSs) have been the focus of research in academic, military, and commercial domains for many years. Contemporary TRSs address mission critical operations emerging in extreme fields such as battlefields, underwater, and disaster territories. The lack of wirelined communication infrastructure in such fields makes the use of wireless technologies including satellite and ad-hoc networks inevitable. TRSs over wireless environments pose unique challenges such as preserving a certain reliability threshold, adhering some maximum tolerable delay, and providing various security measures depending on the nature of the operation and communication environment. In this study, we present a novel approach that uses information coding to integrate both light-weight privacy and adaptive reliability in a single protocol called Secure and Statistically Reliable UDP (SSR-UDP). We prove that the offered security is equivalent to the existing AES-based long key crypto systems, yet, with significantly less computational overhead. Additionally, we demonstrate that the proposed scheme can meet high reliability and delay requirements of TRS applications in highly lossy environments while optimizing the bandwidth use. Our proposed SSR-UDP protocol can also be utilized in similar cyber-physical wireless application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The order of the encoded messages are not important.

  2. As a rule of thumb, normal approximation to the binomial distribution improves whilst np ≥ 5 and n(1 − p) ≥ 5. Our empirical results, however, show that applying continuity correction significantly reduces the approximation error to tolerable values for small n and large p values.

  3. Note that each packet in TRS requires at least 1ms to be produced.

References

  1. SSR-UDP Simulator. Available at http://itom.utdallas.edu/. Accessed May 2011

  2. Ahlswede R, Cai N, Li S-YR, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46:1204–1216

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakre A, Badrinath BR (1995) I-TCP: indirect TCP for mobile hosts. In: Liu J (ed) ICDCS 1995, 15th international conference on distributed computing systems. IEEE Computer Sciety, Los Alamitos, CA, pp 136–143

    Chapter  Google Scholar 

  4. Balakrishnan H, Seshan S, Amir E, Katz RH (1995) Improving TCI/IP performance over wireless networks. In: MobiCom ’95: proceedings of the 1st annual international conference on mobile computing and networking. ACM Press, New York, pp 2–11

    Chapter  Google Scholar 

  5. Barsocchi P, Oligeri G, Potortì F (2006) Packet loss in TCP hybrid wireless networks. In: ASMS, May 2006

  6. Bejczy AK (1980) Sensors, controls, and man-machine interface for advanced teleoperation. Science 208(4450):1327–1335

    Article  Google Scholar 

  7. Bellare M, Canetti R, Krawczyk H (1996) Keying hash functions for message authentication. In: Crypto 96. LNCS 1109

  8. Bellare M, Kilian J, Rogaway P (1994) The security of cipher block chaining. In: Advances in cryptology - Crypto 94. LNCS 839

  9. Bolot JC (1993) End-to-end packet delay and loss behavior in the internet. In: SIGCOMM ’93, vol 23. ACM, pp 289–298

  10. Brady K, Tarn TJ (1998) Internet-based remote teleoperation. In: Proc. 1998 IEEE int. conf. robotics and automation, vol 1

  11. Byers J, Luby M, Mitzenmacher M (2002) A digital fountain approach to asynchronous reliable multicast. IEEE JSAC 20(8):1528–1540

    Google Scholar 

  12. Chatzimisios P, Boucouvalas AC, Vitsas V (2004) Ieee 802.11 wlans: performance analysis in presence of bit errors. In: CSNDSP 2004

  13. Coppersmith D, Winograd S (1990) Matrix multiplication via arithmetic progressions. J Symb Comput 9(3):251–280

    Article  MATH  MathSciNet  Google Scholar 

  14. Dai W (2010) Crypto+ + library 5.6.0. http://www.cryptopp.com/

  15. Dierks T, Rescorla E (2006) The transport layer security (tls) protocol, IETF RFC 4346. http://www.ietf.org/rfc/rfc4346.txt

  16. Doarn CR, Anvari M, Low T, Broderick TJ (2009) Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J E Health 15(4):325–335

    Article  Google Scholar 

  17. Gennaro R, Katz J, Krawczyk H, Rabin T (2010) Secure network coding over the integers. In: Proc. PKC. LNCS 6056, pp 142–160

  18. Goertz RC, Thompson WM (1954) Electronically controlled manipulator. IEEE Commun Mag 12(11):46–47

    Google Scholar 

  19. Guthart GS, Salisbury JK (2000) The intuitive telesurgery system: overview and application. In: Proceedings of IEEE international conference on robotics and automation (ICRA), vol 1, pp 618–621

  20. Harnett BM, Doarn CR, Rosen J, Hannaford B, Broderick TJ (2008) Evaluation of unmanned airborne vehicles and mobile robotic telesurgery in an extreme environment. Telemedicine and e-Health 14(6):539–544

    Article  Google Scholar 

  21. Hill W, Green PS, Jensen JF, Gorfu Y, Shah AS (1994) Telepresence surgery demonstration system. In: Proceedings of international conference on robotics and automation, pp 2302–2307

  22. Ho T, Koetter R, Medard M, Karger D, Effros M (2003) The benefits of coding over routing in a randomized setting. In: Proc. 2003 IEEE international symposium on information theory, p 442

  23. Jaggi S, Sanders P, Chou PA, Effros M, Egner S, Jain K, Tolhuizen L (2003) Polynomial time algorithms for multicast network code construction. IEEE Trans Inf Theory 51:1973–1982

    Article  MathSciNet  Google Scholar 

  24. Kent S, Seo K (2005) Security architecture for the internet protocol, IETF RFC 4301. http://www.irtf.org/rfc/rfc4301.txt

  25. King HH, Tadano K, Donlin R, Friedman D, Lum MJH, Asch V, Wang C, Kawashima K, Hannaford B (2009) Preliminary protocol for interoperable telesurgery. In: Advanced robotics 2009, pp 1–6

  26. Koetter R, Medard M (2003) An algebraic approach to network coding. IEEE/ACM Trans Netw 11(5):782–795

    Article  Google Scholar 

  27. Li SYR, Yeung RW, Cai N (2003) Linear network coding. IEEE Trans Inf Theory 49:371–381

    Article  MATH  MathSciNet  Google Scholar 

  28. Luby M (2002) LT codes. In: Proc. of the 43rd annual IEEE symposium on foundations of computer science (FOCS), pp 271–282

  29. Lum M, Friedman D, King H, Donlin R, Sankaranarayanan G, Broderick T, Sinanan M, Rosen J, Hannaford B (2008) Teleoperation of a surgical robot via airborne wireless radio and transatlantic internet links. In: Field and service robotics, vol 42, pp 305–314

  30. Lum MJH, Friedman DCW, Sankaranarayanan G, King H, Fodero K, Leuschke R, Hannaford B, Rosen J, Sinanan MN (2009) The raven: design and validation of a telesurgery system. Int J Rob Res 28:1183–1197

    Article  Google Scholar 

  31. Nafaa A, Taleb T, Murphy L (2008) Forward error correction strategies for media streaming over wireless networks. IEEE Commun Mag 46(1):72–79

    Article  Google Scholar 

  32. Padhye C, Christensen K, Moreno W, Christensen KJ (2000) A new adaptive fec loss control algorithm for voice over ip applications. In: Proceedings of IEEE international performance, computing and communication conference, pp 307–313

  33. Plank J, Thomason M (2003) On the practical use of ldpc erasure codes for distributed storage applications. Technical Report UT-CS-03-510, University of Tennessee

  34. Rescorla E, Modadugu N (2006) Datagram transport layer security, IETF RFC 4373. http://www.ietf.org/rfc/rfc4347.txt

  35. Roychoudhuri L, Al-Shaer E (2010) Autonomic qos optimization of real-time internet audio using loss prediction and stochastic control. International Journal of Adaptive, Resilient and Autonomic Systems (IJARAS) 1:367–370

    Google Scholar 

  36. Roychoudhuri L, Al-Shaer E (2005) Real-time packet loss prediction based on end-to-end delay variation. IEEE Transactions on Network and Service Management 2

  37. Sankaranarayanan G, King H, Ko S, Lum MJH, Friedman DCW, Rosen J, Hannaford B (2007) Portable surgery master station for mobile robotic telesurgery. In: RoboComm ’07. IEEE Press

  38. Scott M (2010) Miracl: multiprecision integer and rational arithmetic c/c++ library. http://www.shamus.ie/

  39. Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567

    Article  MATH  MathSciNet  Google Scholar 

  40. Strassen V (1969) Gaussian elimination is not optimal. Numer Math 13:345–356

    Article  MathSciNet  Google Scholar 

  41. Tian Y, Xu K, Ansari N (2005) TCP in wireless environments: problems and solutions. Commun Mag, IEEE 43(3):S27–S32

    Article  Google Scholar 

  42. Wang Y, Tozal ME, Al-Shaer E, Sarac K, Thuraisingham B, Chu B-T (2010) Information coding approach for secure and reliable telesurgery communications. Technical Report UNCC-SIS-10-7-1. http://www.cyberdna.uncc.edu/publications.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Engin Tozal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tozal, M.E., Wang, Y., Al-Shaer, E. et al. Adaptive Information Coding for Secure and Reliable Wireless Telesurgery Communications. Mobile Netw Appl 18, 697–711 (2013). https://doi.org/10.1007/s11036-011-0333-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-011-0333-3

Keywords

Navigation