Skip to main content
Log in

Robust Filter-and-forward Beamforming Design for Two-way Multi-antenna Relaying Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate a robust filter-and-forward (FF) beamforming design for two-waymulti-antenna relaying networks, where multiple relays assist two terminals to exchange information. With Gaussian distributed channel errors, the proposed robust beamforming design aims at maximizing the signal-to-interference-plus-noise-ratio (SINR) under individual transmit power constraints at each relay. Exploiting the elegant convex optimization mathematical tools, the optimization problem can be efficiently solved. Finally, simulation results demonstrate that the proposed robust beamformer reduces the sensitivity of the two-way multi-antenna relay networks to channel estimation errors, and outperforms the algorithm with estimated channels only. Moreover, the length of robust beamformer also influences the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50:3062–3080

    Article  MathSciNet  Google Scholar 

  2. Kramer G, Gastpar M, Gupta P (2005) Cooperative strategies and capacity theorems for relay networks. IEEE Trans Inf Theory 51:3037–3063

    Article  MathSciNet  Google Scholar 

  3. Shen Y, Fei Z, Xing C, Kuang J (2011) Beamforming design for multi-pair two-way AF MIMO relaying networks using quadratic programming. In: Proc IEEE ISCPCC, Xi’an, China, pp 1–5

  4. Li W, Li J, Fan P (2010) Network coding for two-way relaying networks over Rayleigh fading channels. IEEE Trans Veh Technol 59(9):4476–4488

    Article  MathSciNet  Google Scholar 

  5. Jing Y, Jafarkhani H (2009) Network beamforming using relays with perfect channel information. IEEE Trans Inf Theory 55:2499–2517

    Article  MathSciNet  Google Scholar 

  6. Zhang S, Liew S, Lam P (2006) Physical layer network coding. In: Proc 12th annual international conference on mobile computing and networking (ACM MobiCom 2006)

  7. Ding Z, Leung K, Goeckel D, Towsley D (2009) On the study of network coding with diversity. IEEE Trans Wireless Commun 8(3):1247–1259

    Article  Google Scholar 

  8. Tao M, Zhang R (2012) Robust relay beamforming for two-way relay networks. IEEE Commun Lett 16(7):1052–1055

    Article  MathSciNet  Google Scholar 

  9. Havary-Nassab V, Shahbazpanahi S, Grami A (2010) Optimal distributed beamforming for two-way relay networks. IEEE Trans Signal Process 58(3):1238–1250

    Article  MathSciNet  Google Scholar 

  10. Zhang R, Liang Y, Chai C, Cui S (2009) Optimal beamforming for two-way multi-antenna relay channel with analogue network coding. IEEE J Sel Areas Comm 27(5):699–712

    Article  Google Scholar 

  11. Gao F, Zhang R, Liang Y (2009) Channel estimation for OFDM modulated two-way relay networks. IEEE Trans Signal Process 57(11):4443–4455

    Article  MathSciNet  Google Scholar 

  12. Zhou Y, Wang J, Ng TS, Higuchi K, Sawahashi M (2008) OFCDM: a promising broadband wireless access technique. IEEE Commun Mag 46:39–49

    Article  Google Scholar 

  13. Zhou Y, Wang J, Sawahashi M (2005) Downlink transmission of broadband OFCDM systems—Part I: hybrid detection. IEEE Trans Commun 53(4):718–729

    Article  Google Scholar 

  14. Munoz-Medina O, Vidal J, Agustin A (2007) Linear transceiver design in nonregenerative relays with channel state information. IEEE Trans Signal Process 55:2593–2604

    Article  MathSciNet  Google Scholar 

  15. Chen H, Gershman AB, Shahbazpanahi S (2010) Filter-and-forward distributed beamforming in relay networks with frequency selective fading. IEEE Trans Signal Process 58:1251–1262

    Article  MathSciNet  Google Scholar 

  16. Liang Y, Ikhleti A, Gerstackertt W, Schobert R (2011) Two-way filter-and-forward beamforming for frequency-selective channels. IEEE Trans Wireless Commun 10:4172–4183

    Article  Google Scholar 

  17. Chen H, Shahbazpanahi S, Gershman AB (2012) Filter-and-forward distributed beamforming for two-way relay networks with frequency selective channels. IEEE Trans Signal Process 60:1927–1941

    Article  MathSciNet  Google Scholar 

  18. Liang Y, Ikhleti A, Gerstackertt W, Schobert R (2010) Filter-and-forward beamforming for multiple multiCAntenna relays. In: Proc IEEE CHINACOM’5, pp 1–8

  19. Xing C, Ma S, Wu Y-C (2010) Robust joint design of linear relay precoder and destination equalizer for dual-hop amplify-and-forward mimo relay systems. IEEE Trans Signal Process 58:2273–2283

    Article  MathSciNet  Google Scholar 

  20. Xing C, Fei Z, Wu Y-C, Ma S, Kuang J (2011) Robust transceiver design for af mimo relay systems with column correlations. In: Proc IEEE ISCPCC, Xi’an, China, pp 1–6

  21. Havary-Nassab V, Shahbazpanahi S, Grami A, Luo Z (2008) Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Trans Signal Process 56:4306–4316

    Article  MathSciNet  Google Scholar 

  22. Quek TQS, Win MZ, Chiani M (2010) Robust power allocation algorithms for wireless relay networks. IEEE Trans Commun 58(7):1931–1938

    Article  Google Scholar 

  23. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. Chong EKP, Zak SH (1996) An introduction to optimization. Wiley, New York

    MATH  Google Scholar 

  25. Zeng M, Zhang R, Cui S (2011) On design of collaborative beamforming for two-way relay networks. IEEE Trans Signal Process 56:2284–2295

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zesong Fei.

Additional information

This work was supported in part by the National Natural Science Foundation of China (NSFC) under grant No.61101130.

Appendix A

Appendix A

Based on the following expressions, i.e. \(\mathbb {E}\{{\mathbf {X}}{\mathbf {X}}^{\textnormal {H}}\}\), \(\mathbb {E}\{{\mathbf {Y}}{\mathbf {A}}{\mathbf {Y}}^{\textnormal {H}}\}\) and \(\mathbb {E}\{{\mathbf {Y}}{\mathbf {X}}{\mathbf {X}}^{\textnormal {H}}{\mathbf {Y}}^{\textnormal {H}}\}\), the terms with respect to the estimation errors in Eqs. 12, 19, 21 and 24 can be calculated, in which \({\mathbf {X}}\), \({\mathbf {Y}}\), \({\mathbf {A}}\) can be written as

$$\begin{array}{rll}{\mathbf{X}}(p,:)&=&[{\mathbf{0}}_{1\times(k+i)},~x_{j,0},\ldots,x_{j,L_{1}-1},{\mathbf{0}}_{1\times(L_{b}+L_{1}-2-k-i)}], \\{\mathbf{Y}}(q,:)&=&[{\mathbf{0}}_{1\times((m-1)\Omega L_{b} L_{1} k\Omega L_{b}+i\Omega+l-1)},~x_{j,0},~{\mathbf{0}}_{1\times(\Omega L_{b}-1)}, \\&&x_{j,1},{\mathbf{0}}_{1\times((N_{R}-m-1)\Omega L_{b} L_{1}-(k+L_{1}-1)\Omega L_{b}-i\Omega-L_{1}-l-1)},\ldots, \\&&x_{j,L_{1}-1},{\mathbf{0}}_{1\times((L_{b}-i)\Omega-j)}], \\{\mathbf{A}}(p,p')&=&\{a_{p,p'}\}, \\p&=&(m-1)\Omega L_{b} L_{1} +k\Omega L_{b}+i\Omega+j, \\q&=&(m-1)\Omega^{2} L_{b}+i\Omega^{2}+(l-1)\Omega+j, \\p'&=&(m'-1)\Omega L_{b} L_{1}+k'\Omega L_{b}+i'\Omega+j', \\k,k'&=&0,\ldots,L_{1}-1, \\&&i,i'=0,\ldots,L_{b}-1, \\&&j,j'=1,\ldots,\Omega, \\l,l'&=&1,\ldots,\Omega, \\&&m,m'=1,\ldots,\Psi,\end{array}$$
(28)

where \({\mathbf {X}}(p,:)\) denotes the pth row of the matrix \({\mathbf {X}}\) and \({\mathbf {A}}(p,p')\) denotes the pth row and the p’th column element of the matrix \({\mathbf {A}}\). In this Appendix, we assume that \(L_{1}=L_{h}(L_{g})\), \(\Omega =M_{R}\) and \(\Psi =N_{R}\).

1.1 A.1 \(\mathbb {E}\{{\textbf {X}}{\textbf {X}}^{\textnormal {H}}\}\)

It is easy to find that

$$ \mathbb{E}\{{\mathbf{X}}{\mathbf{X}}^{\textnormal{H}}\}(p,p') =\mathbb{E}\{{\mathbf{X}}(p,:){\mathbf{X}}^{\textnormal{H}}(p',:)\}, $$
(29)

Due to the statistic independence of the channel estimation error and the definitions in Eq. 2 the above equation can be derived as

$$ \mathbb{E}\{{\mathbf{X}}{\mathbf{X}}^{\textnormal{H}}\}(p,p') = L_{1},~when~{\mathbf{X}}(p,:)={\mathbf{X}}(p',:).$$
(30)

1.2 A.2 \(\mathbb {E}\{{\mathbf {Y}}{\mathbf {A}}{\mathbf {Y}}^{\textnormal {H}}\}\)

The matrix \({\mathbf {Y}}{\mathbf {A}}\)equals to

$$\begin{array}{rll} \{{\mathbf{Y}}{\mathbf{A}}\}(\alpha,d) &=& \sum\limits_{k=0}^{L_{1}-1}{x_{j,k}a_{(m-1)\Omega L_{b} L_{1}+k\Omega L_{b}+i\Omega+j,d}}, \\\alpha&=&(m-1)\Omega^{2} L_{b}+i\Omega^{2}+(l-1)\Omega+j, \\d&=& 1,\ldots,\Omega L_{b}L_{1}N_{R}.\end{array}$$
(31)

Then, the product \({\mathbf {Y}}{\mathbf {A}}{\mathbf {Y}}^{\textnormal {H}}\) is formulated as follows

$$\begin{array}{rll} \{{\mathbf{Y}}{\mathbf{A}}{\mathbf{Y}}^{\textnormal{H}}\}(\alpha,\beta)&=&\sum\limits_{k=0}^{L_{1}-1}\sum \limits_{k'=0}^{L_{1}-1}{x_{j,k}~a_{(m-1)\Omega L_{b} L_{1}+k\Omega L_{b}+i\Omega+j,d}~x_{j',k'}} \\&=&\sum\limits_{k=0}^{L_{1}-1}\sum \limits_{k'=0}^{L_{1}-1}{a_{(m-1)\Omega L_{b} L_{1}+k\Omega L_{b}+i\Omega+j,d}~x_{j,k}~x_{j',k'}}, \\ \alpha&=&(m-1)\Omega^{2} L_{b}+i\Omega^{2}+(l-1)\Omega+j, \\ \beta&=&(m'-1)\Omega^{2} L_{b}+i'\Omega^{2}+(l'-1)\Omega+j', \\ i,i'&=&0,\ldots,L_{b}-1, \\ j,j'&=&1,\ldots,\Omega.\end{array}$$
(32)

If \(j=j'\) and \(k=k'\), then \(\mathbb {E}\{x_{j,k}~x_{j',k'}\}=1\), otherwise \(\mathbb {E}\{x_{j,k}~x_{j',k'}\}=0\). Therefore, Eq. 32 can be rewritten as

$$\begin{array}{rll} \mathbb{E}\{{\mathbf{Y}}{\mathbf{A}}{\mathbf{Y}}^{\textnormal{H}}\}(\alpha,\beta)&=&~\mathbb{E}\{{\mathbf{Y}}(\alpha,:){\mathbf{A}}{\mathbf{Y}}^{\textnormal{H}}(:,\beta)\}\nonumber\\&=&\displaystyle\sum\limits_{k=0}^{L_{1}-1}\displaystyle\sum\limits_{k'=0}^{L_{1}-1}a_{(m-1)\Omega L_{b} L_{1} + k\Omega L_{b} + \alpha,~(m'-1)\Omega L_{b} L_{1} + k'\Omega L_{b} + \beta} \\\alpha&=&1,\ldots,\Omega L_{b},~~~~~ \beta=1,\ldots,\Omega L_{b}.\end{array}$$
(33)

1.3 A.3 \(\mathbb {E}\{{\mathbf {Y}}{\mathbf {X}}{\mathbf {X}}^{\textnormal {H}}{\mathbf {Y}}^{\textnormal {H}}\}\)

According to the statistic independence of matrix, we can calculate \(\mathbb {E}\{{\mathbf {Y}}{\mathbf {X}}{\mathbf {X}}^{\textnormal {H}}{\mathbf {Y}}^{\textnormal {H}}\}\) by using the results of Eqs. 30 and 33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, Z., Wang, N., Xing, C. et al. Robust Filter-and-forward Beamforming Design for Two-way Multi-antenna Relaying Networks. Mobile Netw Appl 18, 467–476 (2013). https://doi.org/10.1007/s11036-012-0430-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-012-0430-y

Keywords

Navigation