Skip to main content
Log in

Adaptive Estimation of WiFi RSSI and Its Impact Over Advanced Wireless Services

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

RSSI is a reference magnitude of radio signal strength received by a wireless terminal. Traditionally, it has been used to implement wireless services like scanning in handoff. But its high long term variability (volatility) makes its high precision estimation be impossible, complicating its applicability. Moreover, every wireless terminal has its own way to provide RSSI. Recently a high impact paper has formally shown that RSSI of laboratory radio signal in WiFi always reverts to its mean. That is, its long term stability can be estimated. We present a new RSSI estimation model that improves other recently published methods; and shows that it can be used, in contrast with those other techniques, to a wide range of current wireless terminals and real world scenarios. We also show its applicability to indoor localization service, by observing how it can be used in a recent high impact paper and improving another paper also published in a high impact journal. Our method can be used in SDN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Suárez A, Elbatsh KA, Macías E (2010) Gradient RSSI filter and predictor for wireless network algorithms and protocols. Netw Protoc Algoritm 2:1–26

    Google Scholar 

  2. Google (2015) Project Fi. https://fi.google.com/about/network/. Accessed 28 Apr 2015

  3. Suárez A, Santana JA, Macías-Lopez EM, Mena VE, Canino JM, Marrero D (2014) RSSI prediction in WiFi considering realistic heterogeneous restrictions. Netw Protoc Algoritm 6:19–40

    Article  Google Scholar 

  4. Subhan F, Ahmed S, Ashraf K et al. (2015) Extended gradient RSSI predictor and filter for signal prediction and filtering in communication holes. Wirel Pers Commun 83:1–18

  5. Chin E, Chieng D, Teh V, Natkaniec M, Loziak K, Gozdecki J (2014) Wireless link prediction and triggering using modified Ornstein–Uhlenbeck jump diffusion process. Wirel Netw 20:379–396

    Article  Google Scholar 

  6. Smith GK (2014) Beacon jitter prediction for wireless Local Area Network (LAN) devices. US Patent App. 14/298,987. Available at: http://www.google.com/patents/US20140376432

  7. van der Schaar M, Sai Shankar N (2005) Cross-layer wireless multimedia transmission: challenges, principles, and new paradigms. Wirel Commun IEEE 12:50–58. doi:10.1109/MWC.2005.1497858

    Article  Google Scholar 

  8. Ali NA, Ekram E, Eljasmy A et al. (2008) Measured delay distribution in a wireless mesh network test-bed. In: Computer systems and applications, 2008. AICCSA 2008. IEEE/ACS International Conference on. IEEE, pp 236–240

  9. Santana JA, Macías E, Mena VE et al. (2015) Estimación Eficiente del RSSI en Redes WiFi para Servicios Inalámbricos Futuros. JITEL 2015, Palma de Mallorca 247–254

  10. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688

    Article  Google Scholar 

  11. Demestichas P, Georgakopoulos A, Karvounas D, Tsagkaris K, Stavroulaki V, Lu J, Xiong C, Yao J (2013) 5G on the horizon: key challenges for the radio-access network. Veh Technol Mag IEEE 8:47–53. doi:10.1109/MVT.2013.2269187

    Article  Google Scholar 

  12. Shuminoski T, Janevski T (2015) 5G mobile terminals with advanced QoS-based user-centric aggregation (AQUA) for heterogeneous wireless and mobile networks. Wirel Netw 21:1–18. doi:10.1007/s11276-015-1047-4

  13. Fiorani M, Skubic B, Mårtensson J et al. (2015) On the design of 5G transport networks. Phot Network Commun 1–13. doi: 10.1007/s11107-015-0553-8

  14. Hong L, Liu X, Zhang L et al. (2015) Towards sensitive link quality prediction in ad hoc routing protocol based on grey theory. Wirel Netw 21:1–11. doi:10.1007/s11276-015-0918-z

  15. Khan MAY, Veitch D (2008) Speedo: realistic achievable bandwidth in 802.11 through passive monitoring. Local computer networks, 2008 LCN 2008 33rd IEEE Conf 892–899

  16. Gupta D, Mohapatra P, Chuah C-N (2011) Seeker: a bandwidth-based association control framework for wireless mesh networks. Wirel Netw 17:1287–1304

    Article  Google Scholar 

  17. Suárez Á, La-Menza M, Macías EM et al. (2006) Automatic resumption of streaming sessions over wireless communications using agents. In: IMECS. 926–931

  18. Macias E, Suarez A, Chiti F, Sacco A, Fantacci R (2011) A hierarchical communication architecture for oceanic surveillance applications. Sensors 11:11343–11356

    Article  Google Scholar 

  19. Siris V, Anagnostopoulou M, Dimopoulos D (2014) Improving mobile video streaming with mobility prediction and prefetching in integrated cellular-WiFi networks. In: Stojmenovic I, Cheng Z, Guo S (eds) Mobile and ubiquitous systems: computing, networking, and services. Springer International Publishing, 699–704. doi:10.1007/978-3-319-11569-6_56

  20. Shanmugaapriyan P, Chitra H, Aiswarya E, Balasubramanian V, Ashok Kumar S (2015) A pragmatic approach for effective indoor localization using IEEE 802.11n. In: Garcia Pineda M, Lloret J, Papavassiliou S, Ruehrup S, Westphall CB (eds) Ad-hoc networks and wireless. Springer, Berlin, pp 203–216

    Google Scholar 

  21. Mardini W, Khamayseh Y, Almodawar AA, Elmallah E (2015) Adaptive RSSI-based localization scheme for wireless sensor networks. peer-to-peer networking and applications. Springer, US, pp 1–14

    Google Scholar 

  22. Nguyen V-G, Do T-X, Kim Y et al. (2015) SDN and virtualization-based LTE mobile network architectures: a comprehensive survey. Wirel Pers Commun 1–38. doi:10.1007/s11277-015-2997-7

  23. Chen N, Rong B, Mouaki A, Li W (2015) Self-organizing scheme based on NFV and SDN architecture for future heterogeneous networks. Mobile Netw Appl 20:466–472. doi:10.1007/s11036-015-0630-3

    Article  Google Scholar 

  24. Geurts J, Li Z, Liu Y et al. (2015) Transparent handover using WiFi network prediction for mobile video streaming. In: Rocha A, Correia AM, Costanzo S, Reis LP (eds) New contributions in information systems and technologies. Springer International Publishing, 1:937–946. doi:10.1007/978-3-319-16486-1_93

  25. Tuysuz MF, Mantar HA (2015) Minimizing communication interruptions using smart proactive channel scanning over IEEE 802.11 WLANs. Wirel Pers Commun 82:1–26. doi:10.1007/s11277-015-2345-y

  26. Lynggaard P, Skouby K (2015) Deploying 5G-technologies in smart city and smart home wireless sensor networks with interferences. Wirel Pers Commun 81:1399–1413. doi:10.1007/s11277-015-2480-5

    Article  Google Scholar 

  27. Liu J, Wan J, Wang Q et al. (2015) A survey on position-based routing for vehicular ad hoc networks. Telecommun Syst 62:1–16. doi: 10.1007/s11235-015-9979-7

  28. Jin R, Che Z, Xu H et al. (2015) An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wirel Netw 21:1–9. doi:10.1007/s11276-015-0936-x

  29. Wang L, Liu W, Jing N et al. (2015) Simultaneous navigation and pathway mapping with participating sensing. Wireless Netw 1–19. doi: 10.1007/s11276-015-0944-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Aurelio Santana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, J.A., Macías, E., Suárez, Á. et al. Adaptive Estimation of WiFi RSSI and Its Impact Over Advanced Wireless Services. Mobile Netw Appl 22, 1100–1112 (2017). https://doi.org/10.1007/s11036-016-0729-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0729-1

Keywords

Navigation