Skip to main content
Log in

Cognitive Heterogeneous Networks with Unreliable Backhaul Connections

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

To enhance the spectrum scarcity of cooperative heterogeneous networks (HetNets) with unreliable backhaul connections, we examine the impact of cognitive spectrum sharing over multiple small-cell transmitters in Nakagami-m fading channels. In this system, the secondary transmitters are connected to macro-cell via wireless backhaul links and communicate with the secondary receiver by sharing the same spectrum with the primary user. Integrating cognitive radio (CR) network into the system, we address the combined power constraints: 1) the peak interference power at the primary user and 2) the maximal transmit power at the secondary transmitters. In addition, to exclude the signaling overhead for exchanging channel-state-information (CSI) at the transmitters, the selection combining (SC) protocol is assumed to employ at the receivers. To evaluate the performance, we first derive the closed-form statistics of the end-to-end signal-to-noise (SNR) ratio, from which the exact outage probability, ergodic capacity and symbol error rate expressions are derived. To reveal further insights into the effective unreliable backhaul links and the diversity of fading parameters, the asymptotic expressions are also attained. The two interesting non-cooperative and Rayleigh fading scenarios are also investigated. Numerical results are conducted to verify the performance of the considered system via Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Thanks to the innovation of spectrum sensing as well as statistical tools i.e., stochastic geometry, HetNets with cognitive small-cells [23] have been proved to overcome many challenges [24, 25] and be feasible in deployment in order to achieve the flexible solutions for high capacity demand.

  2. In [7], the reliability of the backhaul links implies the communication link conditions, which are able to fail due to the wireless link characteristics such as network congestion, synchronization among transceivers[8, 13].

  3. In the literature in unreliable backhaul [26, 31], the perfect knowledge of CSI is not required at the transmitters, which is different from maximum ratio transmission (MRT) protocol [32, 33].

References

  1. Chia S, Gasparroni M, Brick P (2009) The next challenge for cellular networks: Backhaul. IEEE Microw Mag 10:5

    Article  Google Scholar 

  2. Andrews JG (2013) Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag 51(3):136–144

    Article  Google Scholar 

  3. Tipmongkolsilp O, Zaghloul S, Jukan A (2011) The evolution of cellular backhaul technologies: Current issues and future trends. IEEE Commun Surv Tuts 13(1):97–113

    Article  Google Scholar 

  4. Coldrey M, Koorapaty H, Berg J-E, Ghebretensae Z, Hansryd J, Derneryd A, Falahati S (2012) Small-cell wireless backhauling: A non-line-of-sight approach for point-to-point microwave links. In: Proceedings of IEEE Vehicular Technology of Conference, Quebec City, pp 1–5

  5. Pantisano F, Bennis M, Saad W, Debbah M, Latva-Aho M (2012) On the impact of heterogeneous backhauls on coordinated multipoint transmission in femtocell networks. In: Proceedings IEEE International Conference on Communications, Ottawa, pp 5064–5069

  6. Mayer Z, Li J, Papadogiannis A, Svensson T (2013) On the impact of backhaul channel reliability on cooperative wireless networks. In: Proceedings IEEE International Conference on Communications, Budapest, pp 5284–5289

  7. Khan T, Orlik P, Kim KJ, Heath RW (2015) Performance analysis of cooperative wireless networks with unreliable backhaul links. IEEE Commun Lett 19(8):1386–1389

    Article  Google Scholar 

  8. Kim KJ, Orlik P, Khan T (2016) Performance analysis of finite-sized co-operative systems with unreliable backhauls. IEEE Trans Wirel Commun 15(7):5001–5015

    Article  Google Scholar 

  9. Peng M, Liu Y, Wei D, Wang W, Chen H-H (2011) Hierarchical cooperative relay based heterogeneous networks. IEEE Wireless Commun 3:18

    Google Scholar 

  10. Letaief KB, Zhang W (2009) Cooperative communications for cognitive radio networks. Proc IEEE 97 (5):878–893

    Article  Google Scholar 

  11. Al-Qahtani FS, Zhong C, Alnuweiri HM (2015) Opportunistic relay selection for secrecy enhancement in cooperative networks. IEEE Trans Commun 63(5):1756–1770

    Article  Google Scholar 

  12. Wang L, Yang N, Elkashlan M, Yeoh PL, Yuan J (2014) Physical layer security of maximal ratio combining in two-wave with diffuse power fading channels. IEEE Trans Inf Forensic Secur 9(2):247–258

    Article  Google Scholar 

  13. Kim KJ, Duong TQ, Tran X-N (2012) Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Trans Signal Process 60(12):6435–6449

    Article  MathSciNet  Google Scholar 

  14. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong AC, Zhang JC (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082

    Article  Google Scholar 

  15. Zhang R, Liang Y-C (2008) Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE J Sel Top Signal Process 2(1):88–102

    Article  Google Scholar 

  16. Niyato D, Hossain E (2008) Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion. IEEE J Sel Areas Commun 26(1):192–202

    Article  Google Scholar 

  17. Duong TQ, da Costa DB, Elkashlan M, Bao VNQ (2012) Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Trans Veh Technol 61(5):2368–2374

    Article  Google Scholar 

  18. Deng Y, Wang L, Elkashlan M, Kim KJ, Duong TQ (2015) Generalized selection combining for cognitive relay networks over Nakagami-m fading. IEEE Trans Signal Process 63(8):1993–2006

    Article  MathSciNet  Google Scholar 

  19. Xia M, Aissa S (2012) Cooperative AF relaying in spectrum-sharing systems: performance analysis under average interference power constraints and Nakagami-m fading. IEEE Trans Commun 60(6):1523–1533

    Article  Google Scholar 

  20. Duong TQ, Bao VNQ, Alexandropoulos GC, Zepernick H-J (2011) Cooperative spectrum sharing networks with AF relay and selection diversity. IET Electron Lett 47(20):1149–1151

    Article  Google Scholar 

  21. Duong TQ, Bao VNQ, Zepernick H-J (2011) Exact outage probability of cognitive AF relaying with underlay spectrum sharing. IET Electron Lett 47(17):1001–1002

    Article  Google Scholar 

  22. Duong TQ, Bao VNQ, Tran H, Alexandropoulos GC, Zepernick H-J (2012) Effect of primary network on performance of spectrum sharing AF relaying. IET Electron Lett 48(1):25–27

    Article  Google Scholar 

  23. ElSawy H, Hossain E, Kim DI (2013) HetNets with cognitive small cells: User offloading and distributed channel access techniques. IEEE Commun Mag 51(6):28–36

    Article  Google Scholar 

  24. ElSawy H, Hossain E (2014) Two-tier HetNets with cognitive femtocells: Downlink performance modeling and analysis in a multichannel environment. IEEE Trans Mob Comput 13(3):649–663

    Article  Google Scholar 

  25. Adhikary A, Caire G (2012) On the coexistence of macrocell spatial multiplexing and cognitive femtocells. In Proceedings of 2012 International Conference on Communications, Ottawa, Canada, Jul. 2012 pp 6830?6834

  26. Chen Z, Yuan J, Vucetic B (2005) Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Trans Veh Technol 54(4):1312–1321

    Article  Google Scholar 

  27. Guimarães FRV, da Costa DB, Tsiftsis TA, Cavalcante CC, Karagiannidis GK (2014) Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Trans Veh Technol 63(1):433–439

    Article  Google Scholar 

  28. Lodhi A, Said F, Dohler M, Aghvami AH (2008) Closed-form symbol error probabilities of STBC and CDD MC-CDMA with frequency-correlated subcarriers over Nakagami- m fading channels. IEEE Trans Veh Technol 57(2):962–973

    Article  Google Scholar 

  29. Kim KJ, Duong TQ, Elkashlan M, Yeoh PL, Poor HV, Lee MH (2013) Spectrum sharing single-carrier in the presence of multiple licensed receivers. IEEE Trans Wirel Commun 12(10):5223–5235

    Article  Google Scholar 

  30. Duong TQ, Yeoh PL, Bao VNQ, Elkashlan M, Yang N (2012) Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Process Lett 19(11):741–744

    Article  Google Scholar 

  31. Kim KJ, Khan T, Orlik P (2016) Performance analysis of cooperative systems with unreliable backhauls and selection combining. In: IEEE Transactions on Vehicular Technology. in press

  32. Tsiftsis TA, Karagiannidis GK, Sagias NC, Kotsopoulos SA (2006) Performance of MRC diversity receivers over correlated Nakagami-m fading channels. In: Proceedings Communication Systems, Networks and Digital Signal Processing, Patras , pp 84–88

  33. Cavers JK (2000) Single-user and multiuser adaptive maximal ratio transmission for Rayleigh channels. IEEE Trans Veh Technol 49(6):2043–2050

    Article  Google Scholar 

  34. Duong TQ, Da Costa DB, Tsiftsis TA, Zhong C, Nallanathan A (2012) Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Commun Lett 16 (12):2075–2078

    Article  Google Scholar 

  35. Duong TQ, Alexandropoulos GC, Zepernick H-J, Tsiftsis TA (2011) Orthogonal space-time block codes with CSI-assisted amplify-and-forward relaying in correlated Nakagami-m fading channels. IEEE Trans Veh Technol 60(3):882–889

    Article  Google Scholar 

  36. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series and products. Academic Press, New York

    MATH  Google Scholar 

  37. Suraweera HA, Smith PJ, Shafi M (2010) Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans Veh Technol 59(4):1811–1822

    Article  Google Scholar 

  38. Prudnikov A, Brychkov YA, Marichev O (1998) Integrals and Series, vol. I: Elementary Functions. Gordon and Breach, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Joo Hwang.

Additional information

This paper has been submitted in part for presentation to INISCOM 2017 conference, Vietnam, September 2017.

Appendices

Appendix A: Proof of Lemma 1

According to the definition of RV \(\gamma _{k}^s\) at particular SU-T k , which was given as \(\gamma _{k}^s = \min \left (\bar {\gamma }_{\mathcal {P}}|{h_{k}^{s}}|^{2}, \frac {\bar {\gamma }_{\mathcal {I}}}{|{h_{k}^{p}}|^{2}}|{h_{k}^{s}}|^{2} \right )\), results the CDF as

$$\begin{array}{@{}rcl@{}} F_{{\gamma_{k}^s}}\left( {x}\right) &=& \Pr \left\lbrace \min \left( \bar{\gamma}_{\mathcal{P}}|{h_{k}^{s}}|^{2}, \frac{\bar{\gamma}_{\mathcal{I}}}{|{h_{k}^{p}}|^{2}}|{h_{k}^{s}}|^{2} \right) \leq x \right\rbrace \\ &=& \underbrace{\Pr \left\lbrace |{h_{k}^{s}}|^{2} \leq \frac{x}{\bar{\gamma}_{\mathcal{P}}};\frac{\bar{\gamma}_{\mathcal{I}}}{|{h_{k}^{p}}|^{2}} \geq \bar{\gamma}_{\mathcal{P}}\right\rbrace}_{\mathcal{J}_{1}}\\&& + \underbrace{\Pr \left\lbrace \frac{|{h_{k}^{s}}|^{2}}{|{h_{k}^{p}}|^{2}} \leq \frac{x}{\bar{\gamma}_{\mathcal{I}}};\frac{\bar{\gamma}_{\mathcal{I}}}{|{h_{k}^{p}}|^{2}} \leq \bar{\gamma}_{\mathcal{P}} \right\rbrace}_{\mathcal{J}_{2}}. \end{array} $$
(28)

Because the RV \(|{h_{k}^{s}}|^{2}\) and \(|{h_{k}^{p}}|^{2}\) are independent each other. We can derive the first term \(\mathcal {J}_{1}\) as follows

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{1} &=& \Pr \left\lbrace |{h_{k}^{s}}|^{2} \leq \frac{x}{\bar{\gamma}_{\mathcal{P}}}\right\rbrace \Pr\left\lbrace |{h_{k}^{p}}|^{2} \leq \frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}}} \right\rbrace \\ &=& F_{|{h_{k}^{s}}|^{2}} \left( \frac{x}{\bar{\gamma}_{\mathcal{P}}} \right) F_{|{h_{k}^{p}}|^{2}} \left( \frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}}} \right), \end{array} $$
(29)

where \(F_{|{h_{k}^{s}}|^{2}}(.)\) and \( F_{|{h_{k}^{p}}|^{2}}(.)\) are the CDF of Gamma RV \(|{h_{k}^{s}}|\) and \(|{h_{k}^{p}}|\), respectively. For the second term \(\mathcal {J}_{2}\), we can derive by utilize the concept of probability theory, which can be expressed as

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{2} &=&{\int}_{\frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}}}}^{\infty} f_{|{h_{k}^{p}}|^{2}}(y) {\int}_{0}^{\frac{xy}{\bar{\gamma}_{\mathcal{I}}}} f_{|{h_{k}^{s}}|^{2}}(x) dxdy \\ &=&{\int}_{\frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}}}}^{\infty} f_{|{h_{k}^{p}}|^{2}}(y) F_{|{h_{k}^{s}}|^{2}} \left( \frac{xy}{\bar{\gamma}_{\mathcal{I}}} \right)dy. \end{array} $$
(30)

Expanding from Eq. 6 and the help of [36, Eq. (3.350.2)] , the expression in Eq. 30 can be written as

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{2} &=& \frac{\Gamma\left( \mu_{p},\bar{\gamma}_{\mathcal{I}}/\bar{\gamma}_{\mathcal{P}} \eta_{p}\right)}{\Gamma(\mu_{p})}\\&& - \sum\limits_{l=0}^{\mu_{s}-1}\frac{x^{l}}{l!(\eta_{s}\bar{\gamma}_{\mathcal{I}})^{l} {\Gamma}(\mu_{p}) (\eta_{p})^{\mu_{p}}}\\&& {\int}_{\frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}}}}^{\infty} y^{\mu_{p}+l-1} e^{-\left( \frac{1}{\eta_{p}}+\frac{x}{\eta_{s}\bar{\gamma}_{\mathcal{I}}} \right)y}dy \\ &=& \frac{\Gamma\left( \mu_{p},\bar{\gamma}_{\mathcal{I}}/\bar{\gamma}_{\mathcal{P}} \eta_{p}\right)}{\Gamma(\mu_{p})} \\&&- \sum\limits_{l=0}^{\mu_{s}-1}\frac{x^{l}{\Gamma}\left( \mu_{p}+l,\frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}}}\left( \frac{1}{\eta_{p}}+\frac{x}{\eta_{s}\bar{\gamma}_{\mathcal{I}}} \right) \right)}{l!(\eta_{s}\bar{\gamma}_{\mathcal{I}})^{l} {\Gamma}(\mu_{p}) (\eta_{p})^{\mu_{p}} \left( \frac{1}{\eta_{p}}+\frac{x}{\eta_{s}\bar{\gamma}_{\mathcal{I}}} \right)^{\mu_{p}+l}}, \end{array} $$
(31)

where \({\Gamma }(\alpha ,x) \overset {\triangle }{=} {\int }_{x}^{\infty } e^{-t} t^{\alpha -1}dt \) denotes the upper incomplete Gamma function [36, Eq. (8.350.2)]. After some manipulations, we obtain the CDF of \(\gamma _{k}^{s}\) as follows.

$$\begin{array}{@{}rcl@{}} F_{{\gamma_{k}^s}}\left( {x}\right) &=& 1- {\Phi} e^{-\left( \frac{x}{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)} \sum\limits_{i=0}^{\mu_{s}-1} \frac{1}{i!}\left( \frac{x}{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)^{i} \\ & -& \sum\limits_{j=0}^{\mu_{s}-1} \binom{\mu_{p}+j-1}{\mu_{p}-1} \epsilon^{\mu_{p}} e^{-\left( \frac{\bar{\gamma}_{\mathcal{I}}}{\bar{\gamma}_{\mathcal{P}} \eta_{p}} \right)}\\&& \frac{x^{j}e^{- \left( \frac{x}{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)} {\sum}_{g=0}^{\mu_{p}+j-1}\frac{1}{g!(\bar{\gamma}_{\mathcal{P}} \eta_{s})^{g}}\left( x + \epsilon \right)^{g}}{\left( x + {\epsilon} \right)^{\mu_{p} +j}},\end{array} $$
(32)

with the help of [36, Eq. (8.352.4)]. Hence, the PDF of a particular RV \(\gamma _{k}^s \mathbb {I}_{k}\) is modeled by the mixed distribution

$$ f_{\gamma_{k}^s \mathbb{I}_{k}}(x)= (1-{\Lambda})\delta(x)+{\Lambda} \frac{\partial F_{{\gamma_{k}^s}}\left( {x}\right)}{\partial x} , $$
(33)

where δ(x) indicates the Dirac delta function. Hence, the CDF of the RV \(\gamma _{k}^s \mathbb {I}_{k}\) can be written as

$$ F_{\gamma_{k}^s \mathbb{I}_{k}}(x) = {\int}_{0}^{\infty}f_{\gamma_{k}^s \mathbb{I}_{k}}(x)dx = 1-{\Lambda}({\Theta}_{1}(x) + {\Theta}_{2}(x)). $$
(34)

Appendix B: Proof of Theorem 1

From the definition of S-SNR γ S in Eq. 5, which is given by

$$ \gamma_{S} = \max_{k \in K} \left( {\gamma_{1}^{s}} \mathbb{I}_{1}, {\gamma_{2}^{s}} \mathbb{I}_{2},...,{\gamma_{k}^{s}} \mathbb{I}_{k},...,{\gamma_{K}^{s}} \mathbb{I}_{K} \right). $$
(35)

Since all RVs \({\gamma _{k}^{s}} \mathbb {I}_{k}\) are independent and identically distributed with each other, the CDF of SNR γ S can be written as

$$\begin{array}{@{}rcl@{}} F_{\gamma_{S}}(x) &=&F_{{\gamma_{k}^s \mathbb{I}_{k}}}^{K} (x) \\ &=&1+\sum\limits_{k=1}^{K}\binom{K}{k}(-1)^{k} {\Lambda}^{k} ({\Theta}_{1}(x) +{\Theta}_{2}(x))^{k} \\ &=&1+\sum\limits_{k=1}^{K}\binom{K}{k}(-1)^{k} {\Lambda}^{k} \sum\limits_{l=0}^{k}\binom{k}{l}{\Theta}_{1}(x)^{k-l}{\Theta}_{2}(x)^{l}. \end{array} $$
(36)

Applying multinomial theorem provides the following expression

$$\begin{array}{@{}rcl@{}} {\Theta}_{1}(x)^{k-l} &=&\left( {\Phi} e^{-\left( \frac{x}{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)} \sum\limits_{i=0}^{\mu_{s}-1} \frac{1}{i!}\left( \frac{x}{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)^{i} \right)^{k-l} \\ &=&\sum\limits_{u_{1}...u_{\mu_{s}}}^{k-l} \frac{(k-l)!}{u_{1}!...u_{\mu_{s}}!} \frac{{\Phi}^{k-l} e^{-\left( (k-l)/{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)x} x^{{\sum}_{\vartheta=0}^{\mu_{s}-1}\vartheta u_{\vartheta+1}}}{{\prod}_{\vartheta=0}^{\mu_{s}-1}\left( \vartheta!(\bar{\gamma}_{\mathcal{P}}\eta_{s})^{\vartheta} \right)^{u_{\vartheta+1}}}.\\ \end{array} $$
(37)

Again multinomial and binomial theorem give the following expression for Θ2(x)l as

$$\begin{array}{@{}rcl@{}} {\Theta}_{2}(x)^{l} &=&\sum\limits_{w_{1}...w_{\mu_{s}}}^{l} \frac{l!}{w_{1}!...w_{\mu_{s}}!} \prod\limits_{t=0}^{\mu_{s}-1} {\binom{\mu_{p}+t-1}{\mu_{p}-1}}^{w_{t+1}} e^{-\left( \bar{\gamma}_{\mathcal{I}} l/{\bar{\gamma}_{\mathcal{P}} \eta_{p}} \right)} \epsilon^{\mu_{p} l} e^{-\left( l/{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)x} x^{{\sum}_{t=0}^{\mu_{s}-1} tw_{t+1}} \\ &&\underbrace{ \prod\limits_{t=0}^{\mu_{s}-1} \left( \sum\limits_{g=0}^{\mu_{p}+t-1} \frac{1}{g!(\bar{\gamma}_{\mathcal{P}} \eta_{s})^{g}}(x+\epsilon)^{g} \right)^{w_{t+1}}}_{\mathcal{J}_{3}} \left( \underbrace{ \prod\limits_{t=0}^{\mu_{s}-1}\left( (x+\epsilon)^{\mu_{p} +t}\right)^{w_{t+1}}}_{\mathcal{J}_{4}} \right)^{-1} . \end{array} $$
(38)

Let denotes \(\widetilde {L_{a_{n}}} = {\sum }_{b_{n}=0}^{\mu _{p}+n-2} b_{n}a_{b_{n} +1}\), we obtain \(\mathcal {J}_{3}\) as in Eq. 39 in the top of next page and

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{3} &=& \left( \sum\limits_{g_{1}=0}^{\mu_{p}-1} \frac{1}{g_{1}!(\bar{\gamma}_{\mathcal{P}} \eta_{s})^{g_{1}}}(x+\epsilon)^{g_{1}} \right)^{w_{1}} \left( \sum\limits_{g_{2}=0}^{\mu_{p}} \frac{1}{g_{2}!(\bar{\gamma}_{\mathcal{P}} \eta_{s})^{g_{2}}}(x+\epsilon)^{g_{2}} \right)^{w_{2}} ... \left( \sum\limits_{g_{\mu_{s}}=0}^{\mu_{p}+\mu_{s}-2} \frac{1}{g_{\mu_{s}}!(\bar{\gamma}_{\mathcal{P}} \eta_{s})^{g_{\mu_{s}}}}(x+\epsilon)^{g_{\mu_{s}}} \right)^{w_{\mu_{s}}} \\&=& \sum\limits_{a_{1,1}...a_{1,\mu_{p}}}^{w_{1}} \sum\limits_{a_{2,1}...a_{2,\mu_{p}+1}}^{w_{2}} ... \sum\limits_{a_{\mu_{s},1}...a_{\mu_{s},\mu_{p} + \mu_{s}-1}}^{w_{\mu_{s}}} \frac{w_{1}!}{a_{1,1}!...a_{1,\mu_{p}}!} \frac{w_{2}!}{a_{2,1}!...a_{2,\mu_{p}+1}!} ... \frac{w_{\mu_{s}}!}{a_{\mu_{s},1}!...a_{\mu_{s},\mu_{p} + \mu_{s}-1}!} \\&& \frac{1}{{\prod}_{b_{1}=0}^{\mu_{p}-1}\left( b_{1}!(\bar{\gamma}_{\mathcal{P}}\eta_{s})^{b_{1}} \right)^{a_{1,b_{1}+1}}} \frac{1}{{\prod}_{b_{2}=0}^{\mu_{p}}\left( b_{2}!(\bar{\gamma}_{\mathcal{P}}\eta_{s})^{b_{2}} \right)^{a_{2,b_{2}+1}}}...\frac{1}{{\prod}_{b_{\mu_{s}}=0}^{\mu_{p}+\mu_{s}-2}\left( b_{\mu_{s}}!(\bar{\gamma}_{\mathcal{P}}\eta_{s})^{b_{\mu_{s}}} \right)^{a_{\mu_{s},b_{\mu_{s}}+1}}} \\ && \sum\limits_{c_{1}=0}^{\widetilde{L_{a_{1}}}} \sum\limits_{c_{2}=0}^{\widetilde{L_{a_{2}}}} ...\sum\limits_{c_{\mu_{s}}=0}^{\widetilde{L_{a_{\mu_{s}}}}} \binom{\widetilde{L_{a_{1}}}}{c_{1}} \binom{\widetilde{L_{a_{2}}}}{c_{2}}... \binom{\widetilde{L_{a_{\mu_{s}}}}}{c_{\mu_{s}}} \epsilon^{\left( \widetilde{L_{a_{1}}}+\widetilde{L_{a_{2}}}+...+ \widetilde{L_{a_{\mu_{s}}}} -(c_{1}+c_{2}+...+c_{\mu_{s}})\right)} x^{\left( c_{1}+c_{2}+...+c_{\mu_{s}} \right)}. \end{array} $$
(39)
$$ \mathcal{J}_{4} = (x+\epsilon)^{{\sum}_{t=0}^{\mu_{s}-1}(\mu_{p}+t)w_{t+1}}. $$
(40)

By pulling (36), (37), (38) together, yields (9).

Appendix C: Proof of Theorem 3

From Eq. 7, we can rewrite it as the Gamma form as

$$\begin{array}{@{}rcl@{}} F_{\gamma_{k}^s \mathbb{I}_{k}}(x) &=& 1- {\Lambda} {\Phi} \frac{\Gamma\left( \mu_{s},\frac{x}{\bar{\gamma}_{\mathcal{P}} \eta_{s}}\right)}{\Gamma(\mu_{s})} \\ &&- {\Lambda} \sum\limits_{j=0}^{\mu_{s}-1}\frac{\epsilon^{\mu_{p}} x^{j} {\Gamma}\left( \mu_{p}+j,\frac{x+\epsilon} {\bar{\gamma}_{\mathcal{P}} \eta_{s}} \right)}{j!{\Gamma}(\mu_{p}) \left( x+\epsilon\right)^{\mu_{p}+j}}. \end{array} $$
(41)

It can be easily seen that as y goes to infinity,

$$\begin{array}{@{}rcl@{}} && \lim_{y\rightarrow \infty} \frac{\Upsilon(\mu_{\chi},x/y)}{\Gamma(\mu_{\chi})} \approx 0 \; \text{and} \\ && \lim_{y\rightarrow \infty} \frac{\Gamma(\mu_{\chi},x/y)}{\Gamma(\mu_{\chi})} \approx 1. \end{array} $$
(42)

Substituting (42) into (41) with the given outage threshold γ th, we can obtain

$$\begin{array}{@{}rcl@{}} \mathcal{P}_{out}^{Asy}(\gamma_{\text{th}}) &&\overset{\bar{\gamma}_{\mathcal{P}} \rightarrow \infty}{=} \prod\limits_{k=1}^{K} \left( 1-{\Lambda} \frac{1}{ \left( 1+\frac{x}{\epsilon}\right)^{\mu_{p}}} \right) \\ &&\overset{\bar{\gamma}_{\mathcal{P}} \rightarrow \infty}{=} \prod\limits_{k=1}^{K} \left( 1-{\Lambda}\right), \end{array} $$
(43)

where \({\sum }_{j=0}^{\mu _{s}-1}(.)\) is dominated by j = 0 as \(\bar {\gamma }_{\mathcal {P}} \rightarrow \infty \).

Appendix D: Proof of Corollary 3

The symbol error rate is given by

$$\begin{array}{@{}rcl@{}} P_{e} &=& \frac{A \sqrt{B}}{2\sqrt{\pi}} {\int}_{0}^{\infty} x^{-1/2}e^{-B x} \left( 1+ \sum\limits_{k=1}^{K} \binom{K}{k} (-1)^{k} \widehat{\sum\limits_{k,\mu_{s},\mu_{p},{\Lambda},{\Phi}}} \frac{x^{\widetilde{\varphi_{1}}} e^{-\beta x}} {(x+\epsilon)^{\widetilde{\varphi_{2}}}} \right)dx \end{array} $$
(44)
$$\begin{array}{@{}rcl@{}} &=& \frac{A}{2} + \frac{A \sqrt{B}}{2\sqrt{\pi}} \sum\limits_{k=1}^{K} \binom{K}{k} (-1)^{k} \widehat{\sum\limits_{k,\mu_{s},\mu_{p},{\Lambda},{\Phi}}} \underbrace{{\int}_{0}^{\infty} \frac{x^{\widetilde{\varphi_{1}}-1/2} e^{-(\beta+B) x}} {(x+\epsilon)^{\widetilde{\varphi_{2}}}} dx}_{\mathcal{J}_{5}}, \end{array} $$
(45)

where the integral \(\mathcal {J}_{5}\) can be evaluated with the help of [38, Eq. (2.3.6.9)] as

$$ \mathcal{J}_{5} = \epsilon^{\widetilde{\varphi_{1}}+\frac{1}{2}-\widetilde{\varphi_{2}}} {\Gamma} \left( \widetilde{\varphi_{1}}+\frac{1}{2}\right) {\Psi} \left( \widetilde{\varphi_{1}}+\frac{1}{2}; \widetilde{\varphi_{1}}+\frac{3}{2}-\widetilde{\varphi_{2}}; \epsilon (\beta +B)\right)\!, $$
(46)

so that the expression (44) can be written as in Eq. 22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Ha, DB., Nguyen, S. et al. Cognitive Heterogeneous Networks with Unreliable Backhaul Connections. Mobile Netw Appl 23, 1525–1538 (2018). https://doi.org/10.1007/s11036-017-0917-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0917-7

Keywords

Navigation