Skip to main content
Log in

Contract-theoretic Approach for Delay Constrained Offloading in Vehicular Edge Computing Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Mobile Edge Computing (MEC) is a promising solution to improve vehicular services through offloading computation to cloud servers in close proximity to mobile vehicles. However, the self-interested nature together with the high mobility characteristic of the vehicles make the design of the computation offloading scheme a significant challenge. In this paper, we propose a new Vehicular Edge Computing (VEC) framework to model the computation offloading process of the mobile vehicles running on a bidirectional road. Based on this framework, we adopt a contract theoretic approach to design optimal offloading strategies for the VEC service provider, which maximize the revenue of the provider while enhancing the utilities of the vehicles. To further improve the utilization of the computing resources of the VEC servers, we incorporate task priority distinction as well as additional resource providing into the design of the offloading scheme, and propose an efficient VEC server selection and computing resource allocation algorithm. Numerical results indicate that our proposed schemes greatly enhance the revenue of the VEC provider, and concurrently improve the utilization of cloud computing resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qu Z, Keeney J, Robitzsch S, Zaman F, Wang X (2016) Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Commun 13(7):108–116

    Article  Google Scholar 

  2. Zhou Z, Wang Y, Wu QMJ, Yang C, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12(1):48–63

    Article  Google Scholar 

  3. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  4. Chen X, Chen S, Wu Y (2017) Coverless information hiding method based on the chinese character encoding. J Internet Technol 18(2):91–98

    Google Scholar 

  5. Fu Z, Ren K, Shu J, Sun X, Huang F (2016) Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans Parallel Distrib Syst 27(9):2546–2559

    Article  Google Scholar 

  6. Fu Z, Wu X, Guan C, Sun X, Ren K (2016) Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans Inf Forensics Secur 11(12):2706–2716

    Article  Google Scholar 

  7. Kong Y, Zhang M, Ye D (2017) A belief propagation-based method for task allocation in open and dynamic cloud environments. Knowl-Based Syst 115:123–132

    Article  Google Scholar 

  8. Shen J, Shen J, Chen X, Huang X, Susilo W An efficient public auditing protocol with novel dynamic structure for cloud data. IEEE Trans Information Forensics and Security, accepted

  9. Liu Q, Cai W, Shen J, Fu Z, Liu X, Linge N (2016) A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment. Secur Commun Netw 9(17):4002–4012

    Article  Google Scholar 

  10. Liu X, Li Y, Chen H (2016) Wireless resource scheduling based on backoff for multiuser multiservice mobile cloud computing. IEEE Trans Veh Technol 65(11):9247–9259

    Article  Google Scholar 

  11. Shen J, Chang S, Shen J, Liu Q, Sun X (2016) A lightweight multi-layer authentication protocol for wireless body area networks. Future Generation Computer Systems

  12. Gu B, Sheng VS A robust regularization path algorithm for ν-support vector classification. IEEE Trans Neural Networks and Learning Systems, accepted

  13. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Zhang G, Maharjan S, Zhang Y (2016) Energy-efficient offloading for mobile edge computing in 5G heterogenous networks. IEEE Access 4:5896–5907

    Article  Google Scholar 

  14. Yu R, Huang X, Kang J, Ding J, Maharjan S, Gjessing S, Zhang Y (2015) Cooperative resource management in cloud-enabled vehicular networks. IEEE Trans Ind Electron 62(12):7938–7951

    Article  Google Scholar 

  15. Werin L, Wijkander H (1992) Contract economics. Blackwell, Oxford

    Google Scholar 

  16. Huang X, Yu R, Kang J, Wang N, Maharjan S, Zhang Y (2016) Software defined networking with pseudonym systems for secure vehicular clouds. IEEE Access 4:3522–3534

    Article  Google Scholar 

  17. Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352

    Article  Google Scholar 

  18. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608

    Article  Google Scholar 

  19. Zheng K, Meng H, Chatzimisios P, Lei L, Shen X (2015) An SMDP-based resource allocation in vehicular cloud computing systems. IEEE Trans Ind Electron 62(12):7920–7928

    Article  Google Scholar 

  20. Kwak D, Liu R, Kim D, Nath B, Iftode L (2016) Seeing is believing: sharing real-time visual traffic information via vehicular clouds. IEEE Access 4:3617–3631

    Article  Google Scholar 

  21. Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image Represent 40(Part B):516–524

    Article  Google Scholar 

  22. Chen Y, Hao C, Wu W, Wu E (2016) Robust dense reconstruction by range merging based on confidence estimation. Sci China Inf Sci 59(9):1–11

    Google Scholar 

  23. Yuan C, Xia Z, Sun X (2017) Coverless image steganography based on SIFT and BOF. J Internet Technol 18(2):209–216

    Google Scholar 

  24. Tong L, Li Y, Gao W (2016) A hierarchical edge cloud architecture for mobile computing. In: Proceedings of the IEEE international conference on computer communications (INFOCOM), pp 1–9

  25. Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282

    Google Scholar 

  26. Sun X, Ansari N (2016) PRIMAL: profit maximization avatar placement for mobile edge computing. In: Proceedings of IEEE international conference on communications (ICC), pp 1–6

  27. Sapienza M, Torre GL, Leombruno G, Guardo E, Cavallo M, Tomarchio O (2016) Solving critical events through mobile edge computing: an approach for smart cities. In: Proceedings of IEEE international conference on smart computing (SMARTCOMP), pp 1–5

  28. Kumar N, Zeadally S, Rodrigues JJPC (2016) Vehicular delay-tolerant networks for smart grid data management using mobile edge computing. IEEE Commun Mag 54(10):60–66

    Article  Google Scholar 

  29. Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808

    Article  Google Scholar 

  30. Gao L, Wang X, Xu Y, Zhang Q (2011) Spectrum trading in cognitive radio networks: a contract-theoretic modeling approach. IEEE J Sel Areas Commun 29(4):843–855

    Article  Google Scholar 

  31. Li Y, Wang P, Niyato D, Zhang Y (2014) Contract-theoretic modeling for content delivery in relay-based publish-subscribe networks. In: IEEE international conference on communications (ICC), pp 2678–2683

  32. Zhang Y, Song L, Saad W, Dawy Z, Han Z (2015) Contract-based incentive mechanisms for device-to-device communications in cellular networks. IEEE J Sel Areas Commun 33(10):2144–2155

    Article  Google Scholar 

  33. Zhang K, Mao Y, Leng S, Maharjan S, Zhang Y, Vinel A, Jonsson M (2016) Incentive-driven energy trading in the smart grid. IEEE Access 4:1243–1257

    Article  Google Scholar 

  34. Yuan C, Sun X, LV R (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65

    Article  Google Scholar 

  35. Zhang Y, Yu R, Yao W, Xie S, Xiao Y, Guizani M (2011) Home M2M networks: architectures, standards, and QoS improvement. IEEE Commun Mag 49(4):44–52

    Article  Google Scholar 

  36. Fu Z, Huang F, Sun X, Vasilakos AV, Yang C Enabling semantic search based on conceptual graphs over encrypted outsourced data. IEEE Trans Services Computing, accepted

  37. Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans Broadcast 62(3):675–684

    Article  Google Scholar 

  38. Gu B, Sun X, Sheng VS Structural minimax probability machine. IEEE Trans Neural Networks and Learning Systems, accepted

  39. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  40. Zhou Z, Yang C, Chen B, Sun X, Liu Q, Wu QMJ (2016) Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans. Inf Syst E99-D(6):1531–1540

    Article  Google Scholar 

  41. Fu Z, Huang F, Ren K, Weng J, Wang C (2017) Privacy-preserving smart semantic search based on conceptual graphs over encrypted outsourced data. IEEE Trans Inf Forensics Secur 12(8):1874– 1884

    Article  Google Scholar 

  42. Tian Q, Chen S (2017) Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238:286–295

    Article  Google Scholar 

  43. Bolton P, Dewatripont M (2005) Contract theory. MIT Press, Cambridge, pp 31–64

    Google Scholar 

  44. Zhang Y, Sun X, Wang B (2016) Efficient algorithm for K-barrier coverage based on integer linear programming. China Commun 13(7):16–23

    Article  Google Scholar 

  45. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the National Natural Science Foundation of China under Grant No.61374189, the joint fund of the Ministry of Education of P.R. China and China Mobile under Grant MCM20160304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Mao, Y., Leng, S. et al. Contract-theoretic Approach for Delay Constrained Offloading in Vehicular Edge Computing Networks. Mobile Netw Appl 24, 1003–1014 (2019). https://doi.org/10.1007/s11036-018-1032-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-018-1032-0

Keywords

Navigation