Skip to main content

Advertisement

Log in

Telesurgery Robot Based on 5G Tactile Internet

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

With the development of modern medical technology, the emerging 5G, tactile Internet, robot, and artificial intelligence technology have enabled the interdisciplinary innovations facilitating the development of the surgical treatment technology, and enhancing the treatment efficiency of various diseases. In the medical field, the introduction of robot technology has contributed to the telesurgery. Moreover, the telesurgery robot allocated with the 5G tactile Internet as infrastructure, and AI technology as core competitiveness can promote the audio, visual and tactile perceptions of a doctor during the surgery process and solve the problems of resource scheduling; accordingly, it has become the research hotspot. Therefore, this paper introduces a telesurgery robot based on the 5G tactile Internet and artificial intelligence technology. The architecture, composition, characteristics, and advantages of telesurgery are explained in detail from two aspects, the intelligent tactile feedback, and human-machine interaction data. On this basis, a human-machine interaction optimization scheme during the telesurgery process is presented from four aspects, i.e., Edge-Cloud Integration, network slice, and intelligent edge-cloud. Finally, this paper discusses the open issues of the presented telesurgery system regarding the ultra-high reliability, AI-enabled surgery robot, communication, and security, to provide the reference for the promotion of the telesurgery robot performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu J, Zhang Q (2018) Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6:12825–12837

    Article  Google Scholar 

  2. Chen J, He K, Du R, Xiang Y (2015) Dominating set and network coding-based routing in wireless mesh networks. IEEE Trans Parallel Distrib Syst 26(2):423–433

    Article  Google Scholar 

  3. Zhang Q, Fitzek F (2015) Mission critical IoT communication in 5G. Future Access Enablers of Ubiquitous and Intelligent Infrastructures, 35–41

  4. Zhou L, Wu D, Chen J, Dong Z (2018) Greening the smart cities: energy-efficient massive content delivery via D2D communications. IEEE Trans Indus Inf 14(4):1626–1634

    Article  Google Scholar 

  5. Chen M, Li W, Hao Y, Qian Y, Humar I (2018) Edge cognitive computing based smart healthcare system. Futur Gener Comput Syst 86:403–411

    Article  Google Scholar 

  6. He K, Chen J, Du R, Wu Q, Xue G, Zhang X (2016) DeyPoS: deduplicatable dynamic proof of storage for multi-user environments. IEEE Trans Comput 65(12):3631–3645

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou Y, Gu X, Wu D, Chen M, Chan T, Ho S (2018) Statistical study of view preferences for online videos with cross-platform information. IEEE Trans Multimed 20(6):1512–1524

    Article  Google Scholar 

  8. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  Google Scholar 

  9. Tholey G, Desai JP, Castellanos AE (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241(1):102–109

    Google Scholar 

  10. Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thoracic Cardiovas Surg 135:196–202

    Article  Google Scholar 

  11. Currie ME (2015) The role of visualization, force feedback, and augmented reality in minimally invasice heart valve repair. The University of Western Ontario

  12. Chen M, Hao Y, Hu L, Hossain M, Ghoneim A (2018) Edge-CoCaCo: towards joint optimization of computation, caching and communication on edge cloud. IEEE Wirel Commun 25(3): 21–27

    Article  Google Scholar 

  13. Chen J, He K, Yuan Q, Xue G, Du R, Wang L (2017) Batch identification game model for invalid signatures in wireless mobile networks. IEEE Trans Mob Comput 16(6):1530–1543

    Article  Google Scholar 

  14. Zhou L, Wu D, Chen J, Dong Z (2018) When computation hugs intelligence: content-aware data processing for industrial IoT. IEEE Internet of Things Journal 5(3):1657–1666

    Article  Google Scholar 

  15. Xiao S, et al. (2017) Self-evolving trading strategy integrating internet of things and big data. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2017.2764957

    Article  Google Scholar 

  16. Zhang Y (2016) Grorec: a group-centric intelligent recommender system integrating social, mobile and big data technologies. IEEE Trans Serv Comput 9(5):786–795

    Article  Google Scholar 

  17. Zhang Y, et al. (2017) TempoRec: temporal-topic based recommender for social network services. Mobile Netw Appl 22(6):1182–1191

    Article  Google Scholar 

  18. Tian D, Zhou J, Sheng Z (2017) An adaptive fusion strategy for distributed information estimation over cooperative multi-agent networks. IEEE Trans Inf Theory 63(5):3076–3091

    MathSciNet  MATH  Google Scholar 

  19. Chen M, Hao Y (2018) Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J Selected Areas Commun 36(3):587–597

    Article  MathSciNet  Google Scholar 

  20. Zhang Q, Liu J, Zhao G (2018) Towards 5G enabled tactile robotic telesurgery, 1–7. arXiv:1803.03586.pdf

  21. Zhou L, Wu D, Dong Z, Li X (2017) When collaboration hugs intelligence: content delivery over ultra-dense networks. IEEE Commun Mag 55(12):91–95

    Article  Google Scholar 

  22. Eid M, Cha J, Saddik AE (2011) Admux: an adaptive multiplexer for haptic - audio -visual data communication. IEEE Trans Instrum Meas 60(1):21–31

    Article  Google Scholar 

  23. Cizmeci B, Xu X, Chaudhari R, Bachhuber C, Alt N, Steinbach E (2017) A multiplexing scheme for multimodal teleoperation. ACM Trans Multimed Comput Commun Appl 13(2):1–28. [Online]. Available: http://doi.acm.org/10.1145/3063594

    Article  Google Scholar 

  24. Patel M, Wang J (2010) Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel Commun 17(1):80–88

    Article  Google Scholar 

  25. Hachisu T, Kajimoto H (2017) Vibration feedback latency affects material perception during rod tapping interactions. IEEE Trans Haptics 10(2):288–295

    Article  Google Scholar 

  26. Huo S, Zhou Y, Lei J, Ling N, Hou C (2018) Linear feedback control system based salient object detection. IEEE Trans Multimed 20(6):1350–1364

    Article  Google Scholar 

  27. Zhou Y, Huo S, Xiang W, Hou C, Kung S Semi-supervised salient object detection using a linear feedback control system model. IEEE Trans Cybern, 1–13. https://doi.org/10.1109/TCYB.2018.2793278

  28. Zhou Y, Feng L, Hou C, Kung S (2017) Hyperspectral and multispectral image fusion based on local low rank and coupled spectral unmixing. IEEE Trans Geosci Remote Sens, 50 (10)

    Article  Google Scholar 

  29. Chen M, Qian Y, Hao Y, Li Y, Song J (2018) Computing, caching in 5G networks data-driven architecture and delay analysis. IEEE Wirel Commun 25(1):70–75

    Article  Google Scholar 

  30. Ji W, Frossard P, Chen B, Chen Y (2015) Profit optimization for wireless video broadcasting systems based on polymatroidal analysis. IEEE Trans Multimed 17(12):2310–2327

    Article  Google Scholar 

  31. Ji W, Chen Y, Chen M, Chen B, Chen Y, Kung S (2016) Profit maximization through online advertising scheduling for a wireless video broadcast network. IEEE Trans Mob Comput 15(8):2064–2079

    Article  Google Scholar 

  32. Wang T, Wu D, Zhang J, Chen M, Zhou Y (2016) Measuring and analyzing third-party mobile game App stores in China. IEEE Trans Netw Serv Manag 13(4):793–805

    Article  Google Scholar 

  33. Zhou Y, Wang N, xiang W (2017) Clustering hierarchy protocol in wireless sensor networks using an improved PSO algorithm. IEEE Access PP(99):1–1

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for funding this work through the research group project no. RG-1436-023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamim Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Jiang, Y., Peng, L. et al. Telesurgery Robot Based on 5G Tactile Internet. Mobile Netw Appl 23, 1645–1654 (2018). https://doi.org/10.1007/s11036-018-1110-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-018-1110-3

Keywords

Navigation