Abstract
In this paper, we propose a model for the effect of misalignment of antennas due to mechanical vibrations and experimentally validate its accuracy in a Ka-band (26-40 GHz) transmission link. Our approach provides a valuable tool that is analytically tractable and physically simple to implement. To highlight the applicability of the model, a setup based on a centralized radio access network (C-RAN) transmitting and receiving wireless signals in the Ka-band is implemented. With this tool, the robustness of 5G networks to antenna misalignments can be evaluated in terms of bit-error rate. We show how the presence of misalignment in this type of systems induces an error floor observable in the bit-error-rate performance. A simple static decision threshold is implemented taking into account the amount of displacement and, directly related to that factor, on the expected number of fades per unit time. The closed-form expressions derived through this paper are in perfect agreement with the experimental measurements taken from the implemented system.









Similar content being viewed by others
References
Dahlman E, Mildh G, Parkvall S, Peisa J, Sachs J, Selén Y, Sköld J (2014) 5G wireless access: requirements and realization. IEEE Commun Mag 52(12):42–47
Chih-Lin I, Rowell C, Han S, Xu Z, Li G, Pan Z (2014) Toward green and soft: a 5G perspective. IEEE Commun Mag 52(2):66– 73
Rommel S, Rodriguez S, Chorchos L, Grakhova EP, Sultanov AK, Turkiewicz JP, Vegas Olmos JJ, Tafur Monroy I (2016) 225m outdoor W-band radio-over-fiber link using an optical SFP+ module. In: Optical Fiber Communication Conference, p Th2A.16
Lebedev A, Pang X, Vegas Olmos JJ, Beltrán M, Llorente R, Forchhammer S, Tafur Monroy I (2013) Feasibility study and experimental verification of simplified fiber-supported 60-GHz picocell mobile backhaul links. IEEE Photonics J 5(4):7200913
Feliciano da Costa I, Rodriguez S, Puerta R, Vegas Olmos JJ, Sodré Jr AC, da Silva LG, Spadoti D, Tafur Monroy I (2016) Photonic down-conversion and optically controlled reconfigurable antennas in mm-waves wireless networks. In: Optical Fiber Communication Conference, p W3K.3
Prince K, Monroy I (2011) Tafur Multi-band radio over fiber system with all-optical halfwave rectification, transmission and frequency down-conversion. Opt Fiber Technol 17(4):310–314
Rakia T, Gebali F, Yang HC, Alouini MS (2017) Cross layer analysis of P2MP hybrid FSO/RF network. IEEE/OSA J Opt Commun Networking 9(3):234–243
Bag B, Das A, Ansari IS, Prokeš A, Bose C, Chandra A (2018) Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation. IEEE Photonics J 10(3):1–17
Trinh PV, Cong Thang T, Pham AT (2017) Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors. IEEE Photonics J 9(1):1–14
Hur S, Kim T, Love DJ, Krogmeier JV, Thomas TA, Ghosh A (2013) Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun 61(10):4391–4403
Lei H, Luo H, Park KH, Ren Z, Pan G, Alouini MS (2018) Secrecy outage analysis of mixed RF-FSO systems with channel imperfection. IEEE Photonics J 10(3):1–13
Lawrence NP, Ng BWH, Hansen HJ, Abbott D (2017) 5G terrestrial networks: mobility and coverage—solution in three dimensions. IEEE Access 5(1):8064–8093
General Dynamics SATCOM Technologies (2011) Static and Dynamic Wind Load Test Report 1.2m Ka-Band 3122 SeriesAntenna, Test Report-537
Knott P, Loecker C, Algermissen S, Sekora R (2013) Vibration control and structure integration of antennas on aircraft - Research in NATO SET-131. In 7th european conference on antennas and propagation (EuCAP)
Shiozumi T, Ming A, Kida T, Kanamori C, Kobayashi Y, Satoh M (2007) Vibration suppression of ship-mounted antennas using a nonlinear passive vibration isolator. In: IEEE Int. Conf. on Integration Technology
Sendi C, Ayoubi MA (2018) Robust fuzzy tracking control of flexible spacecraft via a T–S fuzzy model. IEEE Trans Aerosp Electron Syst 54(1):170–179
Zhang Q, Zeng Z (2016) Design and implementation of UGC-oriented news gathering system server-side for emergencies. In: IEEE international conference on computer communication and theinternet (ICCCI)
Kazemipour A, Hudlička M., Dickhoff R, Salhi M, Kleine-Ostmann T, Schrader T (2014) The horn antenna as Gaussian source in the mm-wave domain. Journal of Infrared. Millimeter, and Terahertz Waves 35 (9):720–731
Farid AA, Hranilovic S (2007) Outage capacity optimization for free-space optical links with pointing errors. J Lightwave Technol 25(7):1702–1710
Simiu E, Scanlan R (1996) Wind effects on structures, 3rd edn. Wiley, New York
Piersol A, Paez T (2009) Shock and vibration handbook, 6th edn. McGraw Hill, New York
Davenport A (1961) The application of statistical concepts to the wind loading of structures. ICE Proc 19 (4):449—472
Alexandropoulos GC (2017) Position aided beam alignment for millimeter wave backhaul systems with large phased arrays. In: IEEE 7th international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
Silver S (1949) Microwave antenna theory and design. McGraw-Hill, New York
Murphy J, McCabe M, Withington S (1997) Gaussian beam mode analysis of the coupling of power between horn antennas. Journal of Infrared Millimeter, and Terahertz Waves 18(2):501–518
Aubry C, Bitter D (1975) Radiation pattern of a corrugated conical horn in terms of Laguerre-Gaussian functions. IEEE Electron Lett 11(7):154–156
Pasternack-Industry http://www.pasternack.com/ (2018).[Online; accessed 1-May-2018]
Young CY, Andrews L, Ishimaru A (1998) Time-of-arrival fluctuations of a space–time Gaussian pulse in weak optical turbulence: an analytic solution. Appl Opt 37(33):7655–7660
Jurado-Navas A, Garrido-Balsells JM, Castillo-Vázquez M, Puerta-Notario A (2009) Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence. Opt Lett 34(23):3662–3664
Saleh B (1991) Fundamentals of photonics. Wiley, New York
Goldsmith P (1998) Quasioptical systems. Gaussian beam, quasioptical propagation and applications. IEEE Press
Wen G (2015) Foundations for radio frequency engineering. World Scientific, Singapore
Arnon S (2003) Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt Lett 28(2):129
Papoulis A (2002) Probability: Random variables, and stochastic processes. McGraw-Hill, New York
Jurado-Navas A, Garrido-Balsells JM, Paris JF, Castillo-Vázquez M, Puerta-Notario A (2012) Impact of pointing errors on the performance of generalized atmospheric optical channels. Opt Express 20(11):12550–12562
Andrews L, Phillips R (2005) Laser beam propagation throughrandom media. SPIE, Bellingham
Wolfram http://functions.wolfram.com/ (2016). [Online;accessed 1-May-2018]
Abramowitz M, Stegun I (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn. Dover, USA
Jurado-Navas A, Garrido-Balsells JM, Castillo-Vázquez M, Puerta-Notario A (2012) Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels. IET Commun 6(4):390–397
Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23(3):282–332
Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24(1):46–156
Durgin GD, Rappaport TS (2000) Theory of multipath shape factors for small-scale fading wireless channels. IEEE Trans Antennas Propag 48(5):682–693
Acknowledgements
The authors would like to thank the Marie Sklodowska-Curie Innovative Training Network FiWiN5G supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 642355 and the Andalusian Knowledge Agency and the European Union under Marie-Curie COFUND Andalucía Talent Hub program under Grant 291780 for their financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
S. Rodríguez and A. Jurado-Navas have equally contributed to this work.
Appendix: Symbols and notations
Appendix: Symbols and notations
For the sake of clarity, we have provided a list with the symbols and notations employed through this paper. It can be consulted in Table 3.
Rights and permissions
About this article
Cite this article
Rodríguez, S., Jurado-Navas, A., Olmos, J.J.V. et al. Analytical and Experimental Performance Evaluation of Antenna Misalignment in Ka-band Wireless Links. Mobile Netw Appl 24, 564–577 (2019). https://doi.org/10.1007/s11036-018-1158-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11036-018-1158-0