Skip to main content
Log in

Physical Layer Security Performance of Mobile Vehicular Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Vehicular communication is an emergent technology with promising future, which can promote the development of mobile vehicular networks. Due to the broadcast nature of wireless channels, vehicular user mobility, and the diversity of vehicular network structures, the physical layer security issue of the mobile vehicular networks is a major concern. In this paper, the physical layer security performance of the mobile vehicular networks over N-Nakagami fading channels is investigated. Exact closed-form expressions for the probability of strictly positive secrecy capacity (SPSC), secrecy outage probability (SOP), and average secrecy capacity (ASC) are derived. Monte-Carlo simulation is used to verify the secrecy performance under different conditions. We further investigate the relationship between secrecy performance and the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X, Liu YX, Xiong NN, Zhang N, Liu AF, Shen H, Huang CQ (2018) Construction of large-scale low-cost delivery infrastructure using vehicular networks. IEEE Acc 6:21482–21497

    Article  Google Scholar 

  2. Hou XM, Fu, Zhang Q, Liu D (2017) Dynamic coordination process based on predictive graph in Mobile cloud environment. J Liaocheng Univ (Natural Sci Edit) 30(4):96–100

    Google Scholar 

  3. Ahmed E, Gharavi H (2018) Cooperative vehicular networking: a survey. IEEE Trans Intell Trans Syst 19(3):996–1014

    Article  Google Scholar 

  4. Li JQ (2018) Solving reverse logistic problem in prefabricate system by a discrete artificial bee Colony algorithm. J Liaocheng Univ (Natural Sci Ed) 31(2):102–110

    Google Scholar 

  5. Yu X, Chu Y, Jiang F, Guo Y, Gong DW (2018) SVMs classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features. Knowl-Based Syst 141:80–91

    Article  Google Scholar 

  6. Tian QY (2017) Various alternatives for optimization of open-pit-mine integrated Fleet haulage dispatching. J Liaocheng Univ (Natural Sci Edit) 30(3):88–92

    MathSciNet  Google Scholar 

  7. Qiao J, He YJ, Shen XM (2018) Improving video streaming quality in 5G enabled vehicular networks. IEEE Wirel Commun 25(2):133–139

    Article  Google Scholar 

  8. Dong P, Zheng T, Yu S, Zhang HK, Yan XY (2017) Enhancing vehicular communication using 5G-enabled smart collaborative networking. IEEE Wirel Commun 24(6):72–79

    Article  Google Scholar 

  9. Wymeersch H, Seco-Granados G, Destino G, Dardari D, Tufvesson F (2017) 5G mmWave positioning for vehicular networks. IEEE Wirel Commun 24(6):80–86

    Article  Google Scholar 

  10. Huang XM, Yu R, Kang JW, He YJ, Zhang Y (2017) Exploring Mobile edge computing for 5G-enabled software defined vehicular networks. IEEE Wirel Commun 24(6):55–63

    Article  Google Scholar 

  11. Bernardinia C, Asgharb MR, Crispocd B (2017) Security and privacy in vehicular communications: challenges and opportunities. Veh Commun 4(10):13–28

    Google Scholar 

  12. Manvi SS, Tangade S (2017) A survey on authentication schemes in VANETs for secured communication. Veh Commun 4(9):19–30

    Google Scholar 

  13. Lin ME (2016) Computer network attack modeling method based on attack graph. J Liaocheng Univ (Natural Sci Edit) 29(3):100–104

    Google Scholar 

  14. Lai CZ, Zhou HB, Cheng N, Shen XS (2017) Secure group communications in vehicular networks: a software-defined network-enabled architecture and solution. IEEE Veh Technol Mag 12(4):40–49

    Article  Google Scholar 

  15. Jo HJ, Kim IS, Lee DH (2018) Reliable cooperative authentication for vehicular networks. IEEE Trans Intell Trans Syst 19(4):1065–1079

    Article  Google Scholar 

  16. Liu X (2013) Probability of strictly positive secrecy capacity of the Rician-Rician fading channel. IEEE Wireless Commun Lett 2(1):50–53

    Article  Google Scholar 

  17. Liu X (2013) Outage probability of secrecy capacity over correlated log-normal fading channels. IEEE Commun Lett 17(2):289–292

    Article  Google Scholar 

  18. Liu X (2014) Strictly positive secrecy capacity of log-normal fading channel with multiple eavesdroppers. In: IEEE International Conference on Communications (ICC), Sydney, pp 775–779

  19. Lei H, Gao C, Guo Y, Pan G (2015) On physical layer security over generalized gamma fading channels. IEEE Commun Lett 19(7):1257–1260

    Article  Google Scholar 

  20. Lei H, Gao C, Ansari IS, Guo Y, Pan G, Qaraqe KA (2016) On physical layer security over SIMO generalized-K fading channels. IEEE Trans Vehic Tech 65(9):7780–7785

    Article  Google Scholar 

  21. Zou Y, Wang X, Shen W (2013) Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J Select Areas Commun 31(10):2099–2111

    Article  Google Scholar 

  22. Zou Y, Champagne B, Zhu WP, Hanzo L (2015) Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans Commun 63(1):215–228

    Article  Google Scholar 

  23. Pan G, Tang C, Zhang X, Li T, Weng Y (2016) Physical-layer security over non-small-scale fading channels. IEEE Trans Vehic Tech 65(3):1326–1339

    Article  Google Scholar 

  24. Cao Y, Zhao N, Richard Yu F, Jin M, Chen Y, Tang J, Leung VCM (2018) Optimization or Alignment: Secure Primary Transmission Assisted by Secondary Networks. IEEE J Sel Areas in Comm (JSAC) 36(4):905–917

  25. Zhao N, Yu FR, Li M, Yan Q, Leung VCM (2016) Physical layer security issues in interference- alignment-based wireless networks. IEEE Commun Mag 54(8):162–168

    Article  Google Scholar 

  26. Zhao N, Cao Y, Yu R, Chen Y, Jin M, Leung VCM (2018) Artificial Noise Assisted Secure Interference Networks with Wireless Power Transfer. IEEE Trans Vehic Tech

  27. Salo J, El-Sallabi HM, Vainikainen P (2006) The distribution of the product of independent Rayleigh random variables. IEEE Trans Antennas Prop 54(2):639–643

    Article  MathSciNet  Google Scholar 

  28. Karagiannidis GK, Sagias NC, Mathiopoulos PT (2007) N*Nakagami: a novel stochastic model for cascaded fading channels. IEEE Trans Commun 55(8):1453–1458

    Article  Google Scholar 

  29. Xu L, Yu X, Wang H, X Wang, J Wang (2018) Secrecy performance of mobile image transmission networks. 11th EAI International Conference on Mobile Multimedia Communications

  30. Xu L, Wang J, Liu Y, Shi W, Gulliver TA (2018) Outage performance for IDF relaying Mobile cooperative networks. Netw Appl 23(6):1496–1501

  31. Xu LW, Zhang H, Wang JJ, Gulliver TA (2017) Joint TAS/SC and power allocation for IAF relaying D2D cooperative networks. Wirel Netw 23(7):2135–2143

    Article  Google Scholar 

  32. Xu LW, Wang JJ, Zhang H, Gulliver TA (2017) Performance analysis of IAF relaying mobile D2D cooperative networks. J Frankl Inst 354(2):902–916

    Article  Google Scholar 

  33. Ilhan H, Uysal M, Altunbas I (2009) Cooperative diversity for intervehicular communication: performance analysis and optimization. IEEE Trans Vehic Tech 58(7):3301–3310

    Article  Google Scholar 

  34. Bloch M, Barros J, Rodrigues MR, McLaughlin SW (2008) Wireless information-theoretic security. IEEE Trans Vehic Tech 54(6):2515–2534

    MathSciNet  MATH  Google Scholar 

  35. The Wolfram Functions Site. http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/04/

  36. Lei H, Ansari IS, Pan G, Alomair B, Alouini MS (2017) Secrecy capacity analysis over α−μ fading channels. IEEE Commun Lett 21(6):1445–1448

    Article  Google Scholar 

  37. Yang Q, Wang H (2015) Toward trustworthy vehicular social networks. IEEE Commun Mag 53(8):42–47

    Article  Google Scholar 

  38. Yang Q, Lim A, Li S, Fang J, Agrawal P (2010) ACAR: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Netw Appl 15(1):36–60

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U1806201, 61671261, 61304222, 61402246, 61771271, 61802217), Shandong Province Natural Science Foundation (No. ZR2017BF023), Shandong Province Postdoctoral Innovation Project (No. 201703032), Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) (No. MJUKF-IPIC201806), the Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University), Ministry of Education (Grant No. KFKT2018-2),State Key Laboratory of Millimeter Waves (No. K201824),the University Science and Technology Planning Project of Shandong Province (No. J17KA058), the Doctoral Found of QUST (No. 0100229029),China Postdoctoral Science Foundation (No. 2017 M612223), Project of Shandong Province Higher Educational Science and Technology Program (No. J18KA315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinjie Wang or Jingjing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yu, X., Wang, H. et al. Physical Layer Security Performance of Mobile Vehicular Networks. Mobile Netw Appl 25, 643–649 (2020). https://doi.org/10.1007/s11036-019-01224-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01224-8

Keywords

Navigation