Skip to main content

Advertisement

Log in

Social-Aware Caching and Resource Sharing Maximized Video Delivery Capacity in 5G Ultra-Dense Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In 5G networks, a massive number of connections of high data rate services, e.g., video streaming services, certainly make the networks deteriorated because of extreme traffic congestion at the backhaul links of macro base stations (MBSs). Although ultra-dense networks (UDNs) have been considered as a promising architecture to stimulate the 5G networks, the congestion problem hampers the UDNs to provide mobile users (MUs), i.e., represented by device-to-device (D2D) pairs and shared downlink resource users (SUs), with high video delivery capacity. In this paper, we propose a social-aware caching and resource sharing (SCS) strategy for video streaming services in 5G UDNs. Particularly, we formulate the SCS problem by taking into account the social relationship of each D2D pair, the available storage of femtocell base stations (FBSs) and transmitters (TXs) of D2D pairs, the target signal to interference plus noise ratio (SINR) of SUs, and the popularity of videos. The SCS problem is then solved for 1) optimal number of caching copies of each video and optimal caching placements in the FBSs and 2) optimal resource sharing allocation between the SUs and the D2D pairs for D2D communications. This way, the workload at the backhaul links of the MBSs can be reduced. Simultaneously, an arbitrary MU can retrieve the videos alternately from the MBSs, FBSs, and TXs at high cache-hit ratio and maximum delivery capacity. Simulation results are analyzed to show the benefits of the proposed SCS strategy compared to other conventional schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Among different types of SCBs, we deploy caching in the FBSs because they are in close proximity to the MUs.

References

  1. Hammi B, Khatoun R, Zeadally S, Fayad A, Khoukhi L (2017) IoT technologies for smart cities. IET Netw 7:1–13

    Google Scholar 

  2. Minh T, Nguyen (2019) An energy-efficient framework for multimedia data routing in internet of things (IoTs). EAI Trans Indust Netw Intell Syst 6:1–8

    Google Scholar 

  3. Li L, Zhao G, Blum RS (2018) A survey of caching techniques in cellular networks: research issues and challenges in content placement and delivery strategies. IEEE Commun Surv Tutorials 20:1710–1732

    Article  Google Scholar 

  4. Ndikumana A, Thar K, Ho TM, Tran NH, Vo PL, Niyato D, Hong CS (2017) In-network caching for paid contents in content centric networking. In: Proc. IEEE global communications conference, Singapore, pp 1–6

  5. Le THT, Tran NH, Vo PL, Han Z, Bennis M, Hong CS (2017) Contract-based cache partitioning and pricing mechanism in wireless network slicing. In: Proc. of IEEE global communications conference, Singapore, pp 1–6

  6. Ndikumana A, Tran NH, Ho TM, Niyato D, Han Z, Hong CS (2018) Joint incentive mechanism for paid content caching and price based cache replacement policy in named data networking. IEEE Access 6:33702–33717

    Article  Google Scholar 

  7. Nguyen HT, Tuan HD, Duong TQ, Vincent Poor H, Hwang W-J (2019) Collaborative multicast beamforming for content delivery by cache-enabled ultra dense networks. IEEE Trans Commun 67:3396–3406

    Article  Google Scholar 

  8. Xu C, Feng J, Zhou Z, Wu J, Perera C (2017) Cross-layer optimization for cooperative content distribution in multihop device-to-device networks. IEEE Int Things J PP(99):1–10

    Google Scholar 

  9. Chen Z, Pappas N, Kountouris M (2017) Probabilistic caching in wireless D2D networks: cache hit optimal versus throughput optimal. IEEE Commun Lett 21(3):584–587

    Article  Google Scholar 

  10. Song X, Geng Y, Meng X, Liu J, Lei W, Wen Y (2017) Cache-enabled device to device networks with contention-based multimedia delivery. IEEE Access 5:3228–3239

    Article  Google Scholar 

  11. Wang R, Zhang J, Song SH, Letaief KB (2017) Mobility-aware caching in D2D networks. IEEE Trans Wireless Commun 16(8):5001–5015

    Article  Google Scholar 

  12. Park GS, Kim W, Jeong SH, Song H (2017) Smart base station-assisted partial-flow device-to-device offloading system for video streaming services. IEEE Trans Mob Comput 16(9):2639–2655

    Article  Google Scholar 

  13. Golrezaei N, Molisch AF, Dimakis AG, Caire G (2013) Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun Mag 51(4):142–149

    Article  Google Scholar 

  14. Shanmugam K, Golrezaei N, Dimakis AG, Molisch AF, Caire G (2013) FemtoCaching: wireless content delivery through distributed caching helpers. IEEE Trans Inf Theory 59(12):8402–8413

    Article  MathSciNet  Google Scholar 

  15. Shnaiwer YN, Sorour S, Aboutorab N, Sadeghi P, Al-Naffouri TY (2015) Network-coded content delivery in femtocaching-assisted cellular networks. In: Proc. of IEEE global commun. conf, San Diego, pp 1–6

  16. Bastug E, Bennis M, Debbah M (2016) Proactive caching in 5G small cell networks, chapter 6 in towards 5G: applications, requirements and candidate technologies. In: Vannithamby R, Talwar S (eds). 1st edn. Wiley, United States

  17. Zhang J, Zhang X, Yan Z, Li Y, Wang W, Zhang Y (2016) Social-aware cache information processing for 5G ultra-dense networks. In: Proc. of international conference on wireless communications & signal processing, Yangzhou, pp 1–5

  18. Chen Y, Ding M, Li J, Lin Z, Mao G, Hanzo L (2017) Probabilistic small-cell caching: performance analysis and optimization. IEEE Trans Veh Technol 66(5):4341–4354

    Google Scholar 

  19. Liao J, Wong K-K, Khandaker MRA, Zheng Z (2017) Optimizing cache placement for heterogeneous small cell networks. IEEE Commun Lett 21(1):120–123

    Article  Google Scholar 

  20. Liao J, Wong K-K, Zhang Y, Zheng Z, Yang K (2017) Coding, multicast, and cooperation for cache-enabled heterogeneous small cell networks. IEEE Trans Wireless Commun 16(10):6838–6853

    Article  Google Scholar 

  21. Ozfatura E, Gündüz D (2018) Mobility and popularity-aware coded smallcell caching. IEEE Commun Lett 22(2):288–291

    Article  Google Scholar 

  22. Han W, Liu A, Lau VKN (2016) PHY-caching in 5G wireless networks: design and analysis. IEEE Commun Mag 54(8):30–36

    Article  Google Scholar 

  23. Qiao J, He Y, Shen XS (2016) Proactive caching for mobile video streaming in millimeter wave 5G networks. IEEE Trans Wireless Commun 15(10):7187–7198

    Article  Google Scholar 

  24. Zhu K, Zhi W, Chen X, Zhang L (2017) Socially motivated data caching in ultra-dense small cell networks. IEEE Netw 31(4):42–48

    Article  Google Scholar 

  25. Jiang W, Feng G, Qin S (2017) Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Trans Mob Comput 16(5):1382–1393

    Article  Google Scholar 

  26. Lin P, Song Q, Yu Y, Jamalipour A (2017) Extensive cooperative caching in D2D integrated cellular networks. IEEE Commun Lett 21(9):2101–2104

    Article  Google Scholar 

  27. Chen M, Hao Y, Hu L, Huang K, Lau VKN (2017) Green and mobility aware caching in 5G networks. IEEE Trans Wireless Commun 16(2):8347–8361

    Article  Google Scholar 

  28. Gregori M, Gómez-Vilardebó J, Matamoros J, Gündüz D (2016) Wireless content caching for small cell and D2D networks. IEEE J Sel Areas Commun 34(5):1222–1234

    Article  Google Scholar 

  29. Vu TX, Chatzinotas S, Ottersten B, Duong TQ (2018) Energy minimization for cache-assisted content delivery networks with wireless backhaul. IEEE Wireless Commun Lett 7(3):332–335

    Article  Google Scholar 

  30. Wen J, Huang K, Yang S, Li VOK (2017) Cache-enabled heterogeneous cellular networks: optimal tier-level content placement. IEEE Trans Wireless Commun 16(9):5939–5952

    Article  Google Scholar 

  31. Li X, Wang X, Ly K, Han Z, Leung VCM (2017) Collaborative multitier caching in heterogeneous networks: modeling, analysis, and design. IEEE Trans Wireless Commun 16(10):6926–6939

    Article  Google Scholar 

  32. Liu J, Kato N, Ma J, Kadowaki N (2015) Device-to-device communication in LTE-advanced networks: a survey. IEEE Commun Surveys Tuts 17(4):1923–1940

    Article  Google Scholar 

  33. Lin S-H, Chen K-Y, Kao J-C, Hsiao Y-F (2017) Fast spectrum reuse and power control for device-to-device communication. In: Proc. of IEEE vehicular technology conference, Sydney, pp 1–5

  34. Hussain F, Hassan MY, Hossen MS, Choudhury S (2018) System capacity maximization with efficient resource allocation algorithms in D2D communication. IEEE Access 6:32409–32424

    Article  Google Scholar 

  35. Hao Y, Ni Q, Li H, Hou S, Min G (2018) Interference-aware resource optimization for device-to-device communications in 5G networks. IEEE Access 6:78437–78452

    Article  Google Scholar 

  36. Ali F, Jangsher S, Bhatti FA (2017) Resource sharing for D2D communication in multi small cell networks. In: Proc. of IEEE international symposium on personal, indoor, and mobile radio communications, Montreal, pp 1–5

  37. Wu D, Liu Q, Wang H, Yang Q, Wang R (2018) Cache less for more: exploiting cooperative video caching and delivery in D2D communications. IEEE Trans Multimed Early Access, 1–12

  38. Song X, Geng Y, Meng X, Liu J, Lei W, Wen Y (2017) Cache-enabled device to device networks with contention-based multimedia delivery. IEEE Access 5:3228–3239

    Article  Google Scholar 

  39. Zhang X, Li Y, Zhang Y, Zhang J, Li H, Wang S, Wang D (2017) Information caching strategy for cyber social computing based wireless networks. IEEE Trans Emerg Top Comput 5:391–402

    Article  Google Scholar 

  40. Zhang Y, Pan E, Song L, Saad W, Dawy Z, Han Z (2015) Social network aware device-to-device communication in wireless networks. IEEE Trans Wirel Commun 14:177–190

    Article  Google Scholar 

  41. Zhang J, Zhang X, Yan Z, Li Y, Wang W, Zhang Y (2016) Social-aware cache information processing for 5G ultra-dense networks. In: 8th IEEE International conference on wireless communications & signal processing (WCSP), pp 1–5

  42. Ma C, Ding M, Chen H, Lin Z, Mao G, Li X (2016) Socially aware distributed caching in device-to-device communication networks. In: IEEE Globecom Workshops (GC Wkshps), pp 1–6

  43. Ma C, Ding M, Chen H, Lin Z, Mao G, Liang YC, Vucetic B (2018) Socially aware caching strategy in device-to-device communication networks. IEEE Trans Veh Technol 67:4615–4629

    Article  Google Scholar 

  44. Cisco visual networking index: global mobile data traffic forecast update, 2017–2022 White Paper - Cisco, https://www.cisco.comcenussolutionscollateralservice-providervisual-networking-index-vniwhite-paper-c11-738429.html

  45. Abana M, Peng M, Zhao Z, Olawoyin L (2016) Coverage and rate analysis in heterogeneous cloud radio access networks with device-todevice communication. IEEE Access 4:2357–2370

    Article  Google Scholar 

  46. Cha M, Kwak H, Rodriguez P, Ahn Y-Y, Moon S (2007) I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proc. 7th ACM SIGCOMM conference on internet measurement - IMC ’07. ACM Press, New York, pp 1–14

  47. Benevenuto F, Rodrigues T, Cha M, Almeida V (2009) Characterizing user behavior in online social networks. In: Proc. 9th ACM SIGCOMM conference on Internet measurement conference - IMC ’09, New York, pp 49–62

  48. Bai B, Wang L, Han Z, Chen W, Svensson T (2016) Caching based socially-aware D2D communications in wireless content delivery networks: a hypergraph framework. IEEE Wirel Commun 23:74–81

    Article  Google Scholar 

  49. Chandrasekhar V, Andrews JG (2009) Spectrum allocation in tiered cellular networks. IEEE Trans Commun 57:3059–3068

    Article  Google Scholar 

  50. Cheung WC, Quek TQS, Kountouris M (2012) Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J Sel Areas Commun 30:561–574

    Article  Google Scholar 

  51. Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching and Zipf-like distributions: wvidence and implications. In: IEEE INFOCOM ’99, vol 1, pp 126–134

  52. Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2:575–601

    Article  MathSciNet  Google Scholar 

  53. Zhang Y (1998) Solving large-scale linear programs by interior-point methods under the Matlab environment. Optim Methods Softw 10:1–31

    Article  MathSciNet  Google Scholar 

  54. Vo N-S, Duong TQ, Guizani M, Kortun A (2018) 5G optimized caching and downlink resource sharing for smart cities. IEEE Access 6:31457–31468

    Article  Google Scholar 

  55. Eshraghi N, Shah-Mansouri V, Maham B (2016) QoE-aware power allocation for device-to-device video transmissions. In: Proc. IEEE 27th annu. int. symp. pers., indoor mobile radio commun, Valencia, pp 1–5

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2018.308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen-Son Vo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented in part at the 14th EAI International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (Qshine 2018), Ho Chi Minh City, Vietnam, Dec. 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, MP., Vo, NS., Nguyen, S.Q. et al. Social-Aware Caching and Resource Sharing Maximized Video Delivery Capacity in 5G Ultra-Dense Networks. Mobile Netw Appl 25, 2037–2049 (2020). https://doi.org/10.1007/s11036-019-01316-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01316-5

Keywords

Navigation