Abstract
Conventional algorithms for blind image deblurring are often inaccurate at blur kernel estimation, and the recovery effect is far from perfect. To address this, we propose a single-image blind deblurring method based on local rank. For this, we first impose adaptive threshold segmentation on a conventional local rank transform, which is subsequently used to construct a novel model for blind image deblurring. Next, a half-quadratic splitting method is adopted to estimate the blur kernel and an intermediate latent image, in alternating iterations. Finally, the desired latent image is obtained by linear combination of the hyper-Laplacian model and the total-variation-l2 model, where the weights are calculated from the adaptive local ranks. Experimental results using public datasets show that the proposed approach can accurately estimate the blur kernel and effectively suppress ringing effects.









Similar content being viewed by others
References
Fergus R, Singh B, Hertzmann A, et al. (2006) Removing camera shake from a single photograph. ACM Trans Graph 25(3):787–794
Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):1
Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure
Xu L, Zheng S, Jia J (2013) Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
Pan J, Su Z (2013) Fast l0-regularized kernel estimation for robust motion deblurring. IEEE Signal Process Lett 20(9):841–844
Shao WZ, Li HB, Elad M (2015) Bi-l0-l2-norm regularization for blind motion deblurring. J Vis Commun Image Represent 33:42–59
Hu Z, Huang JB, Yang MH (2010) Single image deblurring with adaptive dictionary learning. In: Proceedings of IEEE international conference on image processing (ICIP), pp 1169–1172
Zhang H, Yang J, Zhang Y et al (2011) Sparse representation based blind image deblurring. In: Proceedings of IEEE international conference on multimedia and expo (ICME), pp 1–6
Cai JF, Ji H, Liu C et al (2012) Framelet-based blind motion deblurring from a single image. IEEE Trans Image Process 21(2):562–572
Ren W, Cao X, Pan J et al (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25(7):3426–3437
Pan J, Sun D, Pfister H et al (2016) Blind image deblurring using dark channel prior. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
Yan Y, Ren W, Guo Y et al (2017) Image deblurring via extreme channels prior. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
Chan TF, Wong CK (1998) Total variation blind deconvolution. IEEE Trans Image Process 7(3):370–375
Perrone D, Favaro P (2014) Total variation blind deconvolution: the devil is in the details. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2909–2916
Cho S, Lee S (2009) Fast motion deblurring. ACM Trans Graph 28(5):145
Xu L, Jia J (2010) Two-phase kernel estimation for robust motion deblurring. In: Proceedings of IEEE European conference on computer vision (ECCV), pp 157–170
Pan J, Liu R, Su Z et al (2013) Kernel estimation from salient structure for robust motion deblurring. Signal Process Image Commun 28(9):1156–1170
Dong J, Pan J, Su Z et al (2017) Blind image deblurring with outlier handling. In: Proceedings of IEEE international conference on computer vision (ICCP), pp 2478–2486
Hu Z, Cho S, Wang J et al (2014) Deblurring low-light images with light streaks. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 3382–3389
Cho H, Wang J, Lee S (2012) Text image deblurring using text-specific properties. In: Proceedings of European conference on computer vision (ECCV), pp 524–537
Pan J, Hu Z, Su Z et al (2014) Deblurring text images via l0-regularized intensity and gradient prior. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 2901–2908
Pan J, Hu Z, Su Z et al (2014) Deblurring face images with exemplars. In: Proceedings of IEEE European conference on computer vision (ECCV), pp 47–62
Zabih R, Woodfill J (1994) Non-parametric local transforms for computing visual correspondence. In: Proceedings of IEEE European conference on computer vision (ECCV), pp 151–158
Mukherjee J (2011) Local rank transform: properties and applications. Pattern Recogn Lett 32(7):1001–1008
Gong W, Hu L, Li J et al (2015) Combining sparse representation and local rank constraint for single image super resolution. Inf Sci 325:1–19
Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579
Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of IEEE advances in neural information processing systems (NIPS), pp 1033–1041
Chan SH, Khoshabeh R, Gibson KB, et al. (2011) An augmented Lagrangian method for total variation video restoration. IEEE Trans Image Process 20(11):3097–3111
Zhang X, Wang R, Tian Y et al (2015) Image deblurring using robust sparsity priors. In: Proceedings of IEEE international conference on image processing (ICIP)
Köhler R, Hirsch M, Mohler B et al (2012) Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Proceedings of European conference on computer vision (ECCV), pp 27–40
Levin A, Weiss Y, Durand F et al (2009) Understanding and evaluating blind deconvolution algorithms. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 1964–1971
Zhong L, Cho S, Metaxas D et al (2013) Handling noise in single image deblurring using directional filters. In: Proceedings of IEEE computer vision and pattern recognition (CVPR)
Liu Y, Wang J, Cho S et al (2013) A no-reference metric for evaluating the quality of motion deblurring. ACM Trans Graph 32(6):1–12
Zhou Q, Yang W, Gao G et al (2019) Multi-scale deep context convolutional neural networks for semantic segmentation. World Wide Web 22(2):555–570
Zhou Q, Zheng B, Zhu W et al (2016) Multi-scale context for scene labeling via flexible segmentation graph. Pattern Recogn 59:312–324
Zhao W, Lu H, Wang D (2018) Multisensor image fusion and enhancement in spectral total variation domain. IEEE Trans Multimedia 20(4):866–879
Zhao W, Zhao F, Wang D et al (2018) Multisensor image fusion and enhancement in spectral total variation domain. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 3080–3088
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant no. 61573273. It is also supported by the State Key Laboratory of Rail Transit Engineering Informatization (FSDI) under Grant no.SKLKZ19-01.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhu, L., Jin, L., Zhu, J. et al. Blind Image Deblurring Based on Local Rank. Mobile Netw Appl 25, 1446–1456 (2020). https://doi.org/10.1007/s11036-019-01375-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11036-019-01375-8