Skip to main content
Log in

An Angle Rotate-QAM aided Differential Spatial Modulation for 5G Ubiquitous Mobile Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

As a novel multiple-input multiple-output (MIMO) wireless transmission technique, differential spatial modulation (DSM) can reduce the computational complexity, and henceforth provides a feasible communications option in terms of the intelligence computing for fifth generation (5G) ubiquitous mobile networks. In this paper, a novel high-rate design scheme relying on angle rotate quadrature amplitude modulation (ARQAM) is proposed for DSM schemes. Through layering QAM symbols, the final transmit matrix can be expressed as the superposition of the different layered matrices. Numercial results indicate that the proposed scheme outperforms the identical-throughput multi-ring APSK-aided and PSK-aided DSM schemes. Additionally, we investigate the impact of two-dimensional (2D) and three-dimensional (3D) regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering narrowband MIMO vehicle-to-vehicle (V2V) Ricean fading channel for the proposed ARQAM-aided DSM. Its performance is limited by the V2V channel required for differential detection. Moreover, the influences adopted with 3D MIMO channel model are more significant than 2D MIMO channel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gu Y, Wang Y, Liu T, Ji Y, Liu Z, Li P, Wang X, Ren F EmoSense: Ubiquitous Data-driven Emotion Sensing via Off-the-shelf WiFi Devices. IEEE Trans. Emerging Topics Comput. Intell. [accepted]

  2. Liu Q, Hu X, Ngai EC-H, Liang M, Leung VCM, Cai Z, Yin J (2016) A security patch addressing bandwidth request vulnerabilities in the IEEE 802.16 standard. IEEE Netw 30(5):26–34

    Article  Google Scholar 

  3. Liu Q, Li P, Zhao W, Cai W, Yu S, Leung VCM (2018) A Survey on Security Threats and Defensive Techniques of Machine Learning: A data driven view. IEEE Access 6(99):12103–12117

    Article  Google Scholar 

  4. Feng J, Liu Z, Wu C (2019) Mobile Edge Computing for Iternet of Vehicles: Offloading framework and job scheduling. IEEE Veh Technol Mag 14(1):28–36

    Article  Google Scholar 

  5. Feng J, Liu Z, Wu C (2017) AVE: Autonomous Vehicular Edge Computing Framework with ACO-based Scheduling. IEEE Trans Veh Technol 66(12):10660–10675

    Article  Google Scholar 

  6. Mesleh R, Haas H, Ahn C, Yun S (2006) Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique. In: Proc. of IEEE 1st Int. Conf. Commun. Netw., Beijing, China, pp 1–5

  7. Mesleh RY, Haas H, Sinanovic S, Ahn C, Yun S (2008) Spatial Modulation. IEEE Trans Veh Technol 57(4):2228–2241

    Article  Google Scholar 

  8. Wen M, Cheng X, Yang L (2017) Index modulation for 5G wireless communications. Springer, Berlin

  9. Cheng X, Zhang M, Wen M, Yang L (2018) Index Modulation for 5G: Striving to do more with less. IEEE Wirel Commun Mag 25(2):126–132

    Article  Google Scholar 

  10. Li F, Ding Z, Wang Y, Li J, Liu Z (2017) BEM Channel Estimation for OFDM System in Fast Time-varying Channel. IEICE Trans Commun E100.B(8):1462–1471

    Article  Google Scholar 

  11. Bian Y, Wen M, Cheng X, Poor HV, Jiao B (2013) A differential scheme for spatial modulation. In: Proceedings of IEEE GLOBECOM, Atlanta, GA, pp 4030–4035

  12. Ishikawa N, Sugiura S (2014) Unified differential spatial modulation. IEEE Wirel Commun Lett 3(4):337–340

    Article  Google Scholar 

  13. Bian Y, Cheng X, Wen M, Yang L, Poor HV, Jiao B (2015) Differential Spatial Modulation. IEEE Trans Veh Technol 64(7):3262–3268

    Google Scholar 

  14. Ishikawa N, Sugiura S (2017) Rectangular Differential Spatial Modulation for Open-Loop Noncoherent massive-MIMO Downlink. IEEE Trans Wirel Commun 16(3):1908–1920

    Article  Google Scholar 

  15. Li Z, Cheng X, Han S (2015) A Low-Complexity Optimal Sphere Decoder for Differential Spatial Modulation. Proceedings of IEEE GLOBECOM, San Diego, pp 1–6

  16. Wen M, Cheng X, Bian Y (2015) A Low-Complexity near-ML Differential Spatial Modulation Detector. IEEE Signal Process Lett 22(11):1834–1838

    Article  Google Scholar 

  17. Xiao L, Yang P, Lei X (2015) A Low-Complexity Detection Scheme for Differential Spatial Modulation. IEEE Commun Lett 19(9):1516–1519

    Article  Google Scholar 

  18. Liu J, Xiao L, Xiao Y (2017) A Low-complexity Soft-Decision-aided Detector for Differential Spatial Modulation. In: IEEE 85th VTC Spring, Sydney, pp 1–6

  19. Hwang CS, Nam SH, Chung J, Tarokh V (2005) Differential space time block codes using nonconstant modulus constellations. IEEE Trans Signal Process 51(11):2955–2964

    Article  MathSciNet  Google Scholar 

  20. Martin PA (2015) Differential Spatial Modulation for APSK in Time-Varying Fading Channels. IEEE Commun Lett 19(7): 1261–1264

    Article  Google Scholar 

  21. Liu J, Dan L, Yang P, Xiao L, Yu F, Xiao Y (2017) High-rate APSK-aided Differential Spatial Modulation: Design method and performance analysis. IEEE Commun Lett 21(1):168–171

    Article  Google Scholar 

  22. Hwang J, Chiu Y, Liao C (2008) Performance Analysis of an Angle Differential-QAM Scheme for Resolving Phase Ambiguity, Advanced Communication Technology, 2008. in IEEE 10th ICACT, Phoenix pp 1–6

  23. Zhang D, Liu Y, Dai L, Bashir AK, Nallanathan A, Shim B Performance Analysis of FD-NOMA-based Decentralized V2X Systems. IEEE Trans. Commun., [early access:] https://ieeexplore.ieee.org/document/8666065

  24. Cheng X, Wang C, Laurenson DI, Salous S, Vasilakos AV (2009) An Adaptive Geometry-based Stochastic Model for Non-isotropic MIMO Mobile-to-Mobile Channels. IEEE Trans Wirel Commun 8(9):4824–4835

    Article  Google Scholar 

  25. Yuan Y, Wang C, Cheng X, Ai B, Laurenson DI (2014) Novel 3D Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Trans Wirel Commun 13(1):298–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Yang, L., Zhang, D. et al. An Angle Rotate-QAM aided Differential Spatial Modulation for 5G Ubiquitous Mobile Networks. Mobile Netw Appl 27, 1828–1840 (2022). https://doi.org/10.1007/s11036-019-01399-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01399-0

Keywords

Navigation