Skip to main content

Advertisement

Log in

Clustered-NOMA Based Resource Allocation in Wireless Powered Communication Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Wireless Powered Communication (WPC) provides an effective solution to the contradiction between information transmission and energy consumption for Internet of Things (IoT) terminals. In this paper, a clustered-Non-Orthogonal Multiple Access (C-NOMA) based WPC model is proposed. Base Station (BS) transfers Radio Frequency (RF) energy to all terminals in the downlink, while terminals transmit information to BS in the uplink by utilizing the harvested energy. A terminal clustering scheme based on maximizing the sum of channel condition difference between terminals is adopted. Specifically, Orthogonal Frequency Division Multiple Access (OFDMA) is used for inter-cluster terminals, while NOMA is used for intra-cluster terminals. In addition, a time-sharing mechanism is adopted to decode information. The sum rate in the uplink is maximized by jointly optimizing transmit power of BS, uplink and downlink subslot. Simulation results demonstrate that, the proposed C-NOMA based WPC model can not only maximize the sum rate in the uplink, but also enhance the fairness between terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann M, Schotten H, Taoka H, Tullberg H, Uusitalo MA, Timus B, Fallgren M (2014) Scenarios for 5g mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5):26–35

    Article  Google Scholar 

  2. Michailow N, Matthé M, Gaspar IS, Caldevilla AN, Mendes LL, Festag A, Fettweis G (2014) Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans Commun 62(9):3045–3061

    Article  Google Scholar 

  3. Hu X, Li B, Huang K, Fei Z, Wong K (2018) Secrecy energy efficiency in wireless powered heterogeneous networks: a distributed ADMM approach. IEEE Access 6:20609–20624

    Article  Google Scholar 

  4. Hu S, Liu Z, Guan YL, Xiong W, Bi G, Li S (2014) Sequence design for cognitive CDMA communications under arbitrary spectrum hole constraint. IEEE J Sel Area Commun 32(11):1974–1986

    Article  Google Scholar 

  5. Xia J, Xu Y, Deng D, Zhou Q, Fan L (2019) Intelligent secure communication for internet of things with statistical channel state information of attacker. IEEE Access 7:144481–144488

    Article  Google Scholar 

  6. Iyengar S, Gurbani VK, Zhou Y, Sharma S (July 2018) Opportunistic Prefetching of Cellular Internet of Things (cIoT) device contexts. In: 2018 27th International conference on computer communication and networks (ICCCN), pp 1–6

  7. Junjuan X (2020) Cache-aided mobile edge computing for B5G wireless communication networks. EURASIP J Wireless Comm Netw 2020(1):15

    Article  Google Scholar 

  8. Li C (2020) Cache-enabled physical-layer secure game against smart uav-assisted attacks in b5g NOMA networks. EURASIP J Wireless Comm Netw 2020(1):7

    Article  Google Scholar 

  9. Na Z, Zhang M, Jia M, Xiong M, Gao Z (2019) Joint uplink and downlink resource allocation for the internet of things. IEEE Access 7:15758–15766

    Article  Google Scholar 

  10. Na Z, Lv J, Jiang F, Xiong M, Zhao N (2019) Joint subcarrier and subsymbol allocation-based simultaneous wireless information and power transfer for multiuser gfdm in iot. IEEE Int Things J 6(4):5999–6006

    Article  Google Scholar 

  11. Liu X, Jia M, Zhang X, Lu W (2019) A novel multichannel internet of things based on dynamic spectrum sharing in 5g communication. IEEE Int Things J 6(4):5962–5970

    Article  Google Scholar 

  12. Liu Guangqun, et al (2019) Deep Learning based Channel Prediction for Mobile Edge Computing Networks Towards Intelligent Connected Vehicles. IEEE Access 99:1–7

    Article  Google Scholar 

  13. Lai X, Zou W, Xie D, Li X, Fan L (2017) Df relaying networks with randomly distributed interferers. IEEE Access 5:18909–18917

    Article  Google Scholar 

  14. Diamantoulakis PD, Karagiannidis GK (2017) Maximizing proportional fairness in wireless powered communications. IEEE Wireless Commun Lett 6(2):202–205

    Article  Google Scholar 

  15. Dama S, Sathya V, Kuchi K, Pasca TV (2017) A Feasible Cellular Internet of things: Enabling Edge Computing and the IoT in Dense Futuristic Cellular Networks. IEEE Consum Electr M 6(1):66– 72

    Article  Google Scholar 

  16. Na Z, Lv J, Zhang M, Peng B, Xiong M, Guan M (2019) GFDM Based wireless powered communication for cooperative relay system. IEEE Access 7:50971–50979

    Article  Google Scholar 

  17. Na Z, Wang J, Liu C, Guan M, Gao Z (2020) Join trajectory optimization and communication design for uav-enabled ofdm networks. Ad Hoc Netw 102031:98

    Google Scholar 

  18. Lu W, Hu S, Liu X, He C, Gong Y (2019) Incentive mechanism based cooperative spectrum sharing for ofdm cognitive iot network. IEEE Trans Netw Sci Eng, pp 1–1

  19. Na Z, Wang Y, Li X, Junjuan X, Liu X, Xiong M, Lu W (2018) Subcarrier allocation based simultaneous wireless information and power transfer algorithm in 5g cooperative OFDM communication systems. Phys Commun 29:164–170

    Article  Google Scholar 

  20. Gu Q, Wang G, Fan R, Zhong Z, Yang K, Jiang H (2018) Rate-Energy tradeoff in simultaneous wireless information and power transfer over fading channels with uncertain distribution. IEEE Trans Veh Technol 67(4):3663–3668

    Article  Google Scholar 

  21. Na Z, Li X, Liu X, Deng Z (2017) Subcarrier allocation based simultaneous wireless information and power transfer for multiuser OFDM systems. Eurasip J Wirel Commun & Netw 2017(1):148

    Article  Google Scholar 

  22. Zhang Q, Huang X, Li Q, Qin J (2015) Cooperative jamming aided robust secure transmission for wireless information and power transfer in MISO channels. IEEE Trans Commun 63(3):906–915

    Article  Google Scholar 

  23. Huang K, Lau VKN (2014) Enabling wireless power transfer in cellular networks: architecture, modeling and deployment. IEEE Trans Wirel Commun 13(2):902–912

    Article  Google Scholar 

  24. Liu X, Zhang X (2020) Noma-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Trans Ind Inform 16(8):5379–5388

    Article  Google Scholar 

  25. Lu W, Gong Y, Liu X, Wu J, Peng H (2018) Collaborative energy and information transfer in green wireless sensor networks for smart cities. IEEE Trans Ind Inform 14(4):1585–1593

    Article  Google Scholar 

  26. Deng D (2020) Link selection in buffer-aided cooperative networks for green iot. IEEE Access 8:30763–30771

    Article  Google Scholar 

  27. Zichao Zhao (2020) Intelligent mobile edge computing with pricing in internet of things. IEEE Access 8:37727–37735

    Article  Google Scholar 

  28. Wu Q, Tao M, Kwan Ng DW, Chen W, Schober R (2016) Energy-Efficient resource allocation for wireless powered communication networks. IEEE Trans Wirel Commun 15(3):2312– 2327

    Article  Google Scholar 

  29. Ju H, Zhang R (2014) Throughput maximization in wireless powered communication networks. IEEE Trans Wirel Commun 13(1):418–428

    Article  Google Scholar 

  30. Ali MS, Hossain E, Al-Dweik A, Kim DI (2018) Downlink Power Allocation for coMP-NOMA in multi-Cell Networks. IEEE Trans Commun 66(9):3982–3998

    Article  Google Scholar 

  31. Deng D, Li C, Fan L, Liu X, Zhou F (2018) Impact of antenna selection on physical-layer security of NOMA networks. Wirel Commun Mob Comput, pp 2018

  32. Liu X, Zhai X, Lu W, Wu C (2019) Qos-guarantee resource allocation for multibeam satellite industrial internet of things with noma. IEEE Trans Ind Inform, pp 1–1

  33. Abd-Elmagid MA, Biason A, ElBatt T, Seddik KG, Zorzi M (2017) Non-orthogonal multiple access schemes in wireless powered communication networks. In: 2017 IEEE International conference on communications (ICC), pp 1–6

  34. Liang J, Feng D, He C, Qian G, Guo C, Zhang N (2019) Joint time and power allocation in multi-Cell wireless powered communication networks. IEEE Access 7:43555–43563

    Article  Google Scholar 

  35. Tomida S, Higuchi K (2011) Non-orthogonal access with SIC in cellular downlink for user fairness enhancement. In: 2011 International symposium on intelligent signal processing and communications systems (ISPACS), pp 1–6

  36. Al-Abbasi ZQ, So DKC (2017) Resource allocation in non-orthogonal and hybrid multiple access system with proportional rate constraint. IEEE Trans Wirel Commun 99:1–1

    Google Scholar 

  37. Chingoska H, Hadzi-Velkov Z, Nikoloska I, Zlatanov N (2016) Resource allocation in wireless powered communication networks with non-Orthogonal multiple access. IEEE Wirel Commun Lett 5(6):684–687

    Article  Google Scholar 

  38. Diamantoulakis PD, Pappi KN, Ding Z, Karagiannidis GK (2016) Wireless-Powered communications with non-Orthogonal multiple access. IEEE Trans Wirel Commun 15(12):8422–8436

    Article  Google Scholar 

  39. Celik A, Radaydeh RM, Al-Qahtani FS, El-Malek AHA, Alouini M (2017) Resource Allocation and Cluster Formation for Imperfect NOMA in DL/UL Decoupled HetNets. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp 1–6

  40. Ding Z, Fan P, Poor HV (2016) Impact of user pairing on 5g nonorthogonal multiple-access downlink transmissions. IEEE Trans Veh Technol 65(8):6010–6023

    Article  Google Scholar 

  41. Miao G (2013) Energy-Efficient uplink multi-User MIMO. IEEE Trans Wirel Commun 12(5):2302–2313

    Article  Google Scholar 

  42. Rappaport TS, et al (1996) WIreless communications: principles and practice, volume 2 prentice hall PTR New Jersey

  43. Hu S, Yu B, Qian C, Xiao Y, Xiong Q, Sun C, Gao Y (2018) Nonorthogonal interleave-Grid Multiple Access Scheme for Industrial Internet of Things in 5g Network. IEEE Trans Ind Inform 14(12):5436–5446

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundations of China under Grant 61971081, in part by the General Project of Natural Science Foundation of Liaoning Province under Grant 2019-MS-026, in part by the Fundamental Research Funds for the Central Universities under Grant 3132020198 and Grant 3132019348, in part by the Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme, and in part by the Project of Shenzhen Science and Technology Innovation Committee under Grant JCYJ20170817114522834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In Section 3, the information rate of each terminal is given by Eq. 4, let \({a_{k,n}} = \frac {{{G_{0}}{G_{k,n}}\xi {{\left | {{h_{k,n}}} \right |}^{4}}{P_{0}}}}{{{N_{0}}}}\), the sum rate in the k-th cluster is derived as follows:

$$ \begin{array}{ll} {R_{k}} &= \sum\limits_{{j_{w,n}} = 1}^{N} {{R_{k,{j_{w,n}}}}} \\ &= \sum\limits_{w = 1}^{W} {{\tau_{w}}{T_{1}}\left( {\sum\limits_{{j_{w,n}} = 1}^{N - 1} {{{\log }_{2}}\left( {\frac{{\sum\limits_{i = {j_{w,n}}} {{a_{k,i}}{T_{0}} + {T_{1}}} }}{{\sum\limits_{i > {j_{w,n}}} {{a_{k,{j_{w,n}}}}{T_{0}} + {T_{1}}} }}} \right) + {{\log }_{2}}\left( {\frac{{{a_{k,N}}{T_{0}}{\text{ + }}{T_{1}}}}{{{T_{1}}}}} \right)} } \right)} \\ &= \sum\limits_{w = 1}^{W} {\tau_{w}}{T_{1}}\begin{array} {*{20}{c}}{\left( {{{\log }_{2}}\left( {\frac{{\sum\limits_{i = 1} {{a_{k,1}}{T_{0}} + {T_{1}}} }}{{\sum\limits_{i > 1} {{a_{k,i}}{T_{0}} + {T_{1}}} }}} \right) + {{\log }_{2}}\left( {\frac{{\sum\limits_{i = 2} {{a_{k,2}}{T_{0}} + {T_{1}}} }}{{\sum\limits_{i > 2} {{a_{k,i}}{T_{0}} + {T_{1}}} }}} \right) + ...} \right.}\\ {\left. { + {{\log }_{2}}\left( {\frac{{\sum\limits_{i = N - 1} {{a_{k,N - 1}}{T_{0}} + {T_{1}}} }}{{\sum\limits_{i > N - 1} {{a_{k,i}}{T_{0}} + {T_{1}}} }}} \right) + {{\log }_{2}}\left( {\frac{{{a_{k,N}}{T_{0}}{\text{ + }}{T_{1}}}}{{{T_{1}}}}} \right)} \right)} \end{array} \\ &= \sum\limits_{w = 1}^{W} {{\tau_{w}}{T_{1}}\left( {{{\log }_{2}}\left( {\frac{{\sum\limits_{i = 1} {{a_{k,1}}{T_{0}} + {T_{1}}} }}{{\sum\limits_{i = 2} {{a_{k,i}}{T_{0}} + {T_{1}}} }} \cdot \frac{{\sum\limits_{i = 2} {{a_{k,2}}{T_{0}} + {T_{1}}} }}{{\sum\limits_{i = 3} {{a_{k,i}}{T_{0}} + {T_{1}}} }} \cdot ... \cdot \frac{{\sum\limits_{i = N - 1} {{a_{k,N - 1}}{T_{0}} + {T_{1}}} }}{{{a_{k,N}}{T_{0}}{\text{ + }}T}} \cdot \frac{{{a_{k,N}}{T_{0}}{\text{ + }}{T_{1}}}}{{{T_{1}}}}} \right)} \right)} \\ &= \sum\limits_{w = 1}^{W} {{\tau_{w}}{T_{1}}{{\log }_{2}}\left( {1 + \frac{{\sum\limits_{n = 1}^{N} {{a_{k,n}}{T_{0}}} }}{{{T_{1}}}}} \right)} \\ &= {T_{1}}{\log_{2}}\left( {1 + \frac{{\sum\limits_{n = 1}^{N} {{a_{k,n}}{T_{0}}} }}{{{T_{1}}}}} \right) \end{array} $$
(20)

It can be found from the above expression that the sum rate in each NOMA cluster is independent of τw. Moreover, the fixed decoding order can be seen as a special case of time-sharing, i.e. W = 1. This is corresponding to the case of only one decoding order, i.e. τ1 = 1. Thus, the sum rate in the uplink can be expressed as:

$$ {R_{{\text{sum}}}} = \sum\limits_{k = 1}^{K} {{R_{k}}} = \sum\limits_{k = 1}^{K} {{T_{1}}{{\log }_{2}}\left( {1 + \frac{{\sum\limits_{n = 1}^{N} {{a_{k,n}}{T_{0}}} }}{{{T_{1}}}}} \right)} $$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Z., Liu, Y., Wang, J. et al. Clustered-NOMA Based Resource Allocation in Wireless Powered Communication Networks. Mobile Netw Appl 25, 2412–2420 (2020). https://doi.org/10.1007/s11036-020-01585-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-020-01585-5

Keywords

Navigation