Skip to main content

Advertisement

Log in

Frequency Offset Estimation Algorithm of High-Order M-APSK Modulation Signal Based on DFT

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

How to accurately compensate the Doppler shift is the main challenge for broadband satellite terminals. In this paper, a frequency offset estimation algorithm based on frequency domain window function iterative peaking search is proposed with high-order M-APSK signal models, considering both algorithm complexity and estimation accuracy. The variance of the new algorithm is derived mathematically, and performance curve compared with Cramer-Rao Lower Bound (CRLB) is also simulated under various SNR (signal-to-noise ratio). The effectiveness of new method is verified by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jia M, Gu X, Guo Q, Xiang W, Zhang N (2016) Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G. IEEE Wirel Commun 23(6):96–106

    Article  Google Scholar 

  2. You X, et al. (2021) Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf 64(1):110301

    Article  Google Scholar 

  3. Kodheli O, et al. (2020) Satellite communications in the new space Era: A survey and future challenges. IEEE Commun Surv Tutor, pp 1–1

  4. Su Y, Liu Y, Zhou Y, Yuan J, Cao H, Shi J (2019) Broadband LEO satellite communications: architectures and key technologies. IEEE Wirel Commun 26(2):55–61

    Article  Google Scholar 

  5. Hughes RJ, Nordholt JE (2017) Quantum space race heats up. Nat Photon 11(8)

  6. Kozlowski S (2018) A carrier synchronization algorithm for SDR-based communication with LEO satellites. Radioengineering 27(1):299–306

    Article  Google Scholar 

  7. Zhang Q, Sun H, Feng Z, Gao H, Li W (2020) Data-aided doppler frequency shift estimation and compensation for UAVs. IEEE Internet Things J 7(1):400–415

    Article  Google Scholar 

  8. Jung Y, Shin D, You Y (2019) Efficient estimation algorithm of carrier frequency offset for LTE machine-type communication using frequency hopping. IEEE Access 7:177274–177283

    Article  Google Scholar 

  9. Kumar M, Dabora R (2019) A novel sampling frequency offset estimation algorithm for OFDM systems based on cyclostationary properties. IEEE Access 7:100692–100705

    Article  Google Scholar 

  10. Zygarlicki J, Mroczka J (2012) Variable-frequency prony method in the analysis of electrical power quality. Metrol Meas Syst 19(1):39–48

    Article  Google Scholar 

  11. Zygarlicki J, Zygarlicka M, Mroczka J, Latawiec KJ (2010) A reduced pronys method in power-quality analysis—parameters selection. IEEE Trans Power Deliv 25(2):979–986

    Article  Google Scholar 

  12. Zhou Z, So HC (2012) Linear prediction approach to oversampling parameter estimation for multiple complex sinusoids. Sig Process 92(6):1458–1466

    Article  Google Scholar 

  13. Zhou Z, So HC, Christensen MG (2013) Parametric modeling for damped sinusoids from multiple channels. IEEE Trans Signal Process 61(15):3895–3907

    Article  MathSciNet  Google Scholar 

  14. Cardoso R, de Camargo RF, Pinheiro H, Gründling HA (2006) Kalman filter based synchronization methods. In: 37th IEEE power electronics specialists conference, pp 1–7

  15. Bagheri A, Mardaneh M, Rajaei A, Rahideh A (2016) Detection of grid voltage fundamental and harmonic components using kalman filter and generalized averaging method. IEEE Trans Power Electron 31 (2):1064–1073

    Article  Google Scholar 

  16. Wang Y, Wei W, Xiang J (2017) Multipoint interpolated DFT for sine waves in short records with DC components. Sig Process 131:161–170

    Article  Google Scholar 

  17. Smith J, Serra X (1987) PARSHL: An analysis/synthesis program for non-harmonic sounds based on a sinusoidal representation

  18. Jain VK, Collins WL, Davis DC (1979) High-accuracy analog measurements via interpolated FFT. IEEE Trans Instrum Meas 28(2):113–122

    Article  Google Scholar 

  19. D’Amico AA, D’Andrea AN, Regiannini R (2001) Efficient non-data-aided carrier and clock recovery for satellite DVB at very low signal-to-noise ratios. IEEE J Sel Areas Commun 19(12):2320–2330

    Article  Google Scholar 

  20. Fang L, Duan D, Yang L (2012) A new DFT-based frequency estimator for single-tone complex sinusoidal signals. In: MILCOM 2012 - 2012 IEEE military communications conference , pp 1–6

  21. Scherr S, Ayhan S, Fischbach B, Bhutani A, Pauli M, Zwick T (2015) An efficient frequency and phase estimation algorithm With CRB Performance for FMCW radar applications. IEEE Trans Instrum Meas 64(7):1868–1875

    Article  Google Scholar 

  22. Wen H, Li C, Yao W (2018) Power system frequency estimation of sine-wave corrupted with noise by windowed three-point interpolated DFT. IEEE Trans Smart Grid 9(5):5163–5172

    Article  Google Scholar 

  23. Candan C (2015) Fine resolution frequency estimation from three DFT samples: Case of windowed data. Sig Process 114:245–250

    Article  Google Scholar 

  24. Serbes A (2019) Fast and efficient sinusoidal frequency estimation by using the DFT coefficients. IEEE Trans Commun 67(3):2333–2342

    Article  Google Scholar 

  25. Wang K, Wen H, Li G (2021) Accurate frequency estimation by using three-point interpolated discrete fourier transform based on rectangular window. IEEE Trans Ind Inform 17(1):73–81

    Article  Google Scholar 

  26. Wen H, Guo S, Teng Z, Li F, Yang Y (2014) Frequency estimation of distorted and noisy signals in power systems by FFT-based approach. IEEE Trans Power Syst 29(2):765–774

    Article  Google Scholar 

  27. Duda K (2011) DFT interpolation algorithm for kaiser–bessel and Dolph–Chebyshev windows. IEEE Trans Instrum Meas 60(3):784–790

    Article  Google Scholar 

  28. Wen H, Teng Z, Wang Y, Zeng B, Hu X (2011) Simple interpolated FFT algorithm based on minimize sidelobe windows for power-harmonic analysis. IEEE Trans Power Electron 26(9):2570–2579

    Article  Google Scholar 

  29. Liu Y, Nie Z, Zhao Z, Liu QH (2011) Generalization of iterative Fourier interpolation algorithms for single frequency estimation. Digit Sig Process 21(1):141–149

    Article  Google Scholar 

  30. Rice M, Redd B, Briceno X On carrier frequency and phase synchronization for Coden 16-APSK in aeronautical mobile telemetry, pp 14

  31. Novotny M, Slepicka D, Sedlacek M (2007) Uncertainty analysis of the RMS value and phase in the frequency domain by noncoherent sampling. IEEE Trans Instrum Meas 56(3):983–989

    Article  Google Scholar 

  32. Offelli C, Petri D (1991) Weighting effect on the discrete time Fourier transform of noisy signals. IEEE Trans Instrum Meas 40(6):972–981

    Article  Google Scholar 

  33. Liu Q (2003) Frequency synchronization in global satellite communications systems. IEEE Trans Commun 51(3):359–365

    Article  Google Scholar 

  34. Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 2: DVB-S2 Extensions (DVB-S2X), DVB. http://dvb.org/?standard=second-generation-framing-structure-channel-coding-and-modulation-systems-for-broadcasting-interactive-services-news-gathering-and-other-broadband-satellite-applications-part-2-dvb-s2-extensions. Accessed 17 Apr 2021

  35. Pätzold M (2011) Rayleigh and rice channels. In: Mobile radio channels. Wiley, pp 69–84. https://doi.org/10.1002/9781119974116

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangliang Ren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ren, G., Zhou, X. et al. Frequency Offset Estimation Algorithm of High-Order M-APSK Modulation Signal Based on DFT. Mobile Netw Appl 27, 1659–1670 (2022). https://doi.org/10.1007/s11036-021-01867-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-021-01867-6

Keywords