Skip to main content
Log in

Remote Sensing Image Super-Resolution Based on Lorentz Fitting

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Due to the effect of the model mismatch error between the point spread function (PSF) and actual blur kernel, the performance of remote sensing image super-resolution (SR) is usually poor. In this paper, we propose a novel remote sensing image super-resolution method based on Lorentz fitting, to improve the reconstruction performance in actual application. Note that the actual blur kernel of remote sensing image is non-stationary and usually has non-smooth phenomenon in kernel edge. It is also asymmetric that the degree of blur is not same in radial and tangential directions, and blur is in a sense that the amount of blur depends on pixel locations in a sensor. This paper presents a flexible parametric blur kernel model based on a linear combination of Lorentz basic two-dimensional (2-D) patterns. The proposed model can provide flexible shapes for blur kernel with a different symmetry and non-smooth edge, which can model complicated blur due to various degradation factors accurately. Combining with the proposed PSF model and the optimized adaptive step size strategy, we proposed a remote sensing image super-resolution method to accelerate the convergence of super-resolution outputs. Experiment results have shown that the proposed method outperforms the other recent developed PSF model based remote sensing image super-resolution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Guo L, Woźniak M (2021) An Image Super-Resolution Reconstruction Method with Single Frame Character Based on Wavelet Neural Network in Internet of Things. Mobile Netw Appl 26:390–403

    Article  Google Scholar 

  2. Zhu L, Jin L, Zhu J et al (2021) Blind Image Deblurring Based on Local Rank. Mobile Netw Appl 25:1446–1456

    Article  Google Scholar 

  3. Zhan Y, Fan Q, Bao F et al (2018) Single-Image Super-Resolution Based on Rational Fractal Interpolation. IEEE Trans Image Process 27(8):3782–3797

    Article  MathSciNet  Google Scholar 

  4. Dai S, Han M, Xu W, Wu Y, Gong Y, Katsaggelos AK (2009) Softcuts: a soft edge smoothness prior for color image super-resolution. IEEE Transactions on Image Processing 18(5):969–981

    Article  MathSciNet  Google Scholar 

  5. Cao F, Cai M, Tan Y (2015) mage Interpolation via Low-Rank Matrix Completion and Recovery. IEEE Transactions on Circuits and Systems for Video Technology 25(8):1261–1270

    Article  Google Scholar 

  6. Qin J, Yanovsky I (2018) Robust super-resolution image reconstruction method for geometrically deformed remote sensing images. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp 8050–8053

  7. Chang K, Ding PLK, LI B, (2018) Single Image Super Resolution Using Joint Regularization. IEEE Signal Process Lett 25(4):596–600

    Article  Google Scholar 

  8. Liu X, Chen L, Wang W (2018) Robust Multi-Frame Super-Resolution Based on Spatially Weighted Half-Quadratic Estimation and Adaptive BTV Regularization. IEEE Trans Image Process 27(10):4971–4986

    Article  MathSciNet  Google Scholar 

  9. Dong C, C. C, Loy K, et al (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  10. Jiang J, Ma X, Chen C et al (2017) Single image super resolution via locally regularized anchored neighborhood regression andnonlocal means. IEEE Trans Multimedia 19(1):15–26

    Article  Google Scholar 

  11. Shen J (2021) Wang Y, Zhang J (2021) ASDN: A Deep Convolutional Network for Arbitrary Scale Image Super-Resolution. Mobile Netw Appl 26:13–26

    Article  Google Scholar 

  12. Yang M, Wang Y (2013) A self-learning approach to single image super-resolution. IEEE Trans Multimedia 15(3):498–508

    Article  Google Scholar 

  13. Huang J, Singh A, Ahuja N (2015) Single image super-resolution from transformed self-exemplars. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 5197–5206

  14. Levin A, Weiss Y, F Durand et al (2009) Understanding and evaluating blind deconvolution algorithms. IEEE Conference on Computer Vision and Pattern Recognition, pp 1964–1971

  15. Huang L, Xia Y (2021) Fast Blind Image Super Resolution Using Matrix-Variable Optimization. IEEE Trans Circuits Syst Video Technol 31(3):945–955

    Article  Google Scholar 

  16. Jang J, Yun JD, Yang S (2016) Modeling Non-Stationary Asymmetric Lens Blur by Normal Sinh-Arcsinh Model. IEEE Trans Image Process 25(5):2184–2195

    Article  MathSciNet  Google Scholar 

  17. Liu S, Zhou F, Liao Q (2016) Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model. IEEE Trans Image Process 25(12):5943–5956

    Article  MathSciNet  Google Scholar 

  18. Oliveira JP, Figueiredo MAT, Bioucas-Dias JM (2014) Parametric Blur Estimation for Blind Restoration of Natural Images: Linear Motion and Out-of-Focus. IEEE Trans Image Process 23(1):466–477

    Article  MathSciNet  Google Scholar 

  19. Zhang F, Lu W, Liu H, Xue F (2018) Natural image deblurring based on l0-regularization and kernel shape optimization. Multimedia Tools Appl 77(20):26 239-26 257

    Article  Google Scholar 

  20. Liu S, Wang H, Wang J, Pan C (2016) Blur-kernel bound estimation from pyramid statistics. IEEE Trans Circuits Syst Video Techn 26(5):1012–1016

    Article  Google Scholar 

  21. Shen H, Du L, Zhang L, Gong W (2012) A blind restoration method for remote sensing images. IEEE Geosci Remote Sens Lett 9(6):1137–1141

    Article  Google Scholar 

  22. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally Centralized Sparse Representation for Image Restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  Google Scholar 

  23. Liu YQ, Du X, Shen LH, Chen SJ (2021) Estimating Generalized Gaussian Blur Kernels for Out-of-Focus Image Deblurring. IEEE Trans Circuits Syst Video Technol 31(3):829–843

    Article  Google Scholar 

  24. Perrone D, Favaro P (2016) A clearer picture of total variation blind deconvolution. IEEE Trans Pattern Anal Mach Intell 38(6):1041–1055

    Article  Google Scholar 

  25. Galatsanos N, Mesarovic V, Molina R (2000) Hierarchical Bayesian image restoration from partially known blurs. IEEE Trans Image Process 9(10):1784–1797

    Article  Google Scholar 

  26. Yang L, Zhang X, Ren J(2011) Adaptive wiener filtering with Gaussian fitted point spread function in image restoration. IEEE 2nd International Conference on Software Engineering and Service Science, pp. 890–894

  27. Pan J, Hu Z, Su Z, Yang M (2017) L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans Pattern Anal Mach Intell 39(2):342–355

  28. Hosseini MS, Plataniotis KN (2020) Convolutional Deblurring for Natural Imaging. IEEE Trans Image Process 29:250–264

    Article  MathSciNet  Google Scholar 

  29. Oh S, Kim G (2014) Robust estimation of motion blur kernel using apiecewise-linear model. IEEE Transactions on Image Process 23(3):1394–1407

    Article  MathSciNet  Google Scholar 

  30. Baechler G, Scholefield A, Baboulaz L, Vetterli M (2017) Sampling and Exact Reconstruction of Pulses with Variable Width. IEEE Trans Signal Process 65(10):2629–2644

    Article  MathSciNet  Google Scholar 

  31. Bardsley JM, Laobeul N (2008) Tikhonov regularized Poisson likelihood estimation: Theoretical justification and a computational method. Inverse Problems Sci. Eng. 16(2):199–215

    Article  MathSciNet  Google Scholar 

  32. Dong W, Tao S, Xu G et al (2021) Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations. IEEE Trans Image Process 30:1030–1043

    Article  Google Scholar 

  33. Buades A, Coll B, Morel JM (2005) A Non-Local Algorithm for Image Denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2:60–65

    MATH  Google Scholar 

  34. Zhuo S, Sim T (2011) Defocus map estimation from a single image. Pattern Recognition 44(9):1852–1858

    Article  Google Scholar 

  35. Moghaddam M E(2007) A mathematical model to estimate out of focus blur,” in Proceedings of International Symposium on Image and Signal Processing and Analysis. IEEE, pp. 278–281

  36. Wang Z, Bovik A (2006) Modern image quality assessment. Morgan and Claypool Publishing Company, New York, pp 106–199

  37. Li Y, Zhang Y, Huang X, Ma J (2018) Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval. IEEE Trans Geosci Remote Sens 56(11):6521–6536

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (No. LQ21F010014) and the National Natural Science Foundation of China (NSFC, No. 61871348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Liu, Y., Lu, W. et al. Remote Sensing Image Super-Resolution Based on Lorentz Fitting. Mobile Netw Appl 27, 1615–1628 (2022). https://doi.org/10.1007/s11036-021-01870-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-021-01870-x

Keywords

Navigation