Skip to main content

Advertisement

Log in

Secure Communication for RF Energy Harvesting NOMA Relaying Networks with Relay-User Selection Scheme and Optimization

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the physical layer security (PLS) of a radio frequency energy harvesting (RF EH) non-orthogonal multiple access (NOMA) relaying network where relay-user selection scheme and secrecy performance optimization are investigated. Specifically, we consider a scenario, where the energy-constrained users from two different user clusters harvest RF energy from the selected relay to transmit their messages to a destination with the help of a relay cluster in the presence of a passive eavesdropper. To enhance the PLS performance of the considered system, we propose a relay and user selection scheme and an optimal algorithm to find the best system parameter set including time switching ratio and power allocation ratio, which can bring the best secrecy performance for the system. Accordingly, to evaluate the secrecy performance, the closed-form expressions of secrecy outage probability are derived. Moreover, the impacts of the network parameters on the secrecy performance are investigated to achieve more insight into the behavior of NOMA relaying network with RF EH. Finally, the accuracy of our analysis is verified by Monte-Carlo simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ding Z, Liu Y, Choi J, Sun Q, Elkashlan M, Chih-Lin I, Poor HV (2017) Application of non-orthogonal multiple access in lte and 5g networks. IEEE Commun Mag 55(2):185–191

    Article  Google Scholar 

  2. Akpakwu GA, Silva BJ, Hancke GP, Abu-Mahfouz AM (2017) A survey on 5g networks for the internet of things: Communication technologies and challenges. IEEE access 6:3619–3647

    Article  Google Scholar 

  3. Kabalci Y (2019) 5g mobile communication systems: Fundamentals, challenges, and key technologies. In: Smart grids and their communication systems. Springer, pp 329–359

  4. Ullah Z, Al-Turjman F, Mostarda L (2020) Cognition in uav-aided 5g and beyond communications: a survey. IEEE Trans Cogn Commun Netw 6(3):872–891

    Article  Google Scholar 

  5. Fourati H, Maaloul R, Chaari L (2021) A survey of 5g network systems: challenges and machine learning approaches. Int J Mach Learn Cybern 12(2):385–431

    Article  Google Scholar 

  6. Makki B, Chitti K, Behravan A, Alouini MS (2020) A survey of noma: Current status and open research challenges. IEEE Open J Commun Soc 1:179–189

    Article  Google Scholar 

  7. Chen Z, Ding Z, Dai X, Zhang R (2017) An optimization perspective of the superiority of noma compared to conventional oma. IEEE Trans Signal Process 65(19):5191–5202

    Article  MathSciNet  Google Scholar 

  8. Liu Y, Pan G, Zhang H, Song M (2016) On the capacity comparison between mimo-noma and mimo-oma. IEEE Access 4:2123–2129

    Article  Google Scholar 

  9. Wei Z, Guo J, Ng DWK, Yuan J (2017) Fairness comparison of uplink noma and oma. In: 2017 IEEE 85th vehicular technology conference (VTC Spring). IEEE, pp 1–6

  10. Vaezi M, Baduge GAA, Liu Y, Arafa A, Fang F, Ding Z (2019) Interplay between noma and other emerging technologies: a survey. IEEE Trans Cogn Commun Netw 5(4):900–919

    Article  Google Scholar 

  11. Tran DD, Ha DB, So-In C, Tran H, Nguyen TG, Baig ZA, Sanguanpong S, et al. (2018) Performance analysis of df/af cooperative miso wireless sensor networks with noma and swipt over nakagami-m fading. IEEE access 6:56142–56161

    Article  Google Scholar 

  12. Rauniyar A, Engelstad PE, Østerbø ON (2020) On the performance of bidirectional noma-swipt enabled iot relay networks. IEEE Sensors J 21(2):2299–2315

    Article  Google Scholar 

  13. Lu X, Wang P, Niyato D, Kim DI, Han Z (2014) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun Surv Tutor 17(2):757–789

    Article  Google Scholar 

  14. Ha DB, Tran DD, Tran-Ha V, Hong EK (2015) Performance of amplify-and-forward relaying with wireless power transfer over dissimilar channels. Elektronika ir Elektrotechnika J 21(5):90–95

    Google Scholar 

  15. Al-kahtani MS, Ferdouse L, Karim L (2020) Energy efficient power domain non-orthogonal multiple access based cellular device-to-device communication for 5g networks. Electronics 9(2):237

    Article  Google Scholar 

  16. Ha DB, Nguyen QS (2017) Outage performance of energy harvesting DF relaying NOMA networks. Mobile Networks and Applications

  17. Truong VT, Ha DB (2020) Secured scheme for rf energy harvesting mobile edge computing networks based on noma and access point selection. In: 2020 7th NAFOSTED conference on information and computer science (NICS) (IEEE), pp 7–12

  18. Truong VT, Ha DB, Lee Y, Nguyen AN (2020) On performance of cooperative transmission in uplink non-orthogonal multiple access wireless sensor networks. In: 2020 4th International conference on recent advances in signal processing, telecommunications & computing (SigTelCom) (IEEE), pp 56–60

  19. Ha DB, Nguyen SQ, Nguyen HT (2019) Cooperative cognitive non-orthgonal multiple access under unreliable backhaul connections. Mobile Netw Appl 24(2):596–617

    Article  MathSciNet  Google Scholar 

  20. Duy TT, Ngoc PTD, Tran PT (2021) Performance enhancement for multihop cognitive df and af relaying protocols under joint impact of interference and hardware noises: Noma for primary network and best-path selection for secondary network. Wirel Commun Mob Comput

  21. Son PN, Duy TT (2020) A new approach for two-way relaying networks: improving performance by successive interference cancellation, digital network coding and opportunistic relay selection. Wirel Netw 26 (2):1315–1329

    Article  Google Scholar 

  22. Sheng Z, Tuan HD, Duong TQ, Poor HV, Fang Y (2018) Low-latency multiuser two-way wireless relaying for spectral and energy efficiencies. IEEE Trans Signal Process 66(16):4362–4376

    Article  MathSciNet  Google Scholar 

  23. Nguyen VL, Ha DB, Tran DD, Lee Y (2019) Enhancing physical layer security for cooperative non-orthogonal multiple access networks with artificial noise. EAI Endorsed Trans Indust Netw Intellig Syst 6(20):e4

    Google Scholar 

  24. Yu H, Lee IG (2020) Physical layer security based on noma and aj for misose channels with an untrusted relay. Futur Gener Comput Syst 102:611–618

    Article  Google Scholar 

  25. Le TA, Kong H (2019) Secrecy analysis of a cooperative noma network using an eh untrusted relay. Int J Electron 106(6):799–815

    Article  Google Scholar 

  26. Lei H, Yang Z, Park KH, Ansari IS, Guo Y, Pan G, Alouini MS (2018) Secrecy outage analysis for cooperative noma systems with relay selection scheme. arXiv:1811.03220

  27. Kieu TN, Tran DD, Ha DB, Voznak M (2019) Secrecy performance analysis of cooperative miso noma networks over nakagami-m fading. IETE J Res, 1–12

  28. Guo C, Zhao L, Feng C, Ding Z, Wang HM (2020) Secrecy performance of noma systems with energy harvesting and full-duplex relaying. IEEE Trans Veh Technol 69(10):12301–12305

    Article  Google Scholar 

  29. Xie X, Li M, Shi Z, Tang H, Huang Q (2021) User selection and dynamic power allocation in the swipt-noma relay system. EURASIP J Wirel Commun Netw 2021(1):1–19

    Article  Google Scholar 

  30. Li D, Shen C, Qiu Z (2013) Two-way relay beamforming for sum-rate maximization and energy harvesting. In: 2013 IEEE International conference on communications (ICC) (IEEE), pp 3115–3120

  31. Chen J, Yang L, Alouini MS (2018) Physical layer security for cooperative noma systems. IEEE Trans Veh Technol 67(5):4645–4649

    Article  Google Scholar 

  32. Zaghdoud N, Alouane WH, Boujemaa H, Touati F (2019) Secure performance of af and df relaying in cooperative noma systems. In: 2019 19th International conference on sciences and techniques of automatic control and computer engineering (STA) (IEEE), pp 614–619

  33. Anh L, Kong H (2020) Secrecy performance of an uplink-downlink cooperative pd-noma df network in pls. Int J Electron 107(11):1861–1886

    Article  Google Scholar 

  34. Garcia CE, Camana MR, Koo I (2020) Particle swarm optimization-based secure computation efficiency maximization in a power beacon-assisted wireless-powered mobile edge computing noma system. Energies (19961073), 13(21)

  35. Masaracchia A, Da Costa DB, Duong TQ, Nguyen MN, Nguyen MT (2019) A pso-based approach for user-pairing schemes in noma systems: Theory and applications. IEEE Access 7:90550–90564

    Article  Google Scholar 

  36. Marini F, Walczak B (2015) Particle swarm optimization (pso). a tutorial. Chemometr Intell Lab Syst 149:153–165

    Article  Google Scholar 

  37. Bao VNQ, Linh-Trung N, Debbah M (2013) Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Trans Wireless Commun 12(12):6076–6085

    Article  Google Scholar 

  38. Zhao S, Zhang Q, Meng Q, Wang L (2014) Optimum power allocation for relay network based on artificial noise. J Inf Comput Sci 11(16):5863–5870

    Article  Google Scholar 

  39. Jameel F, Wyne S, Kaddoum G, Duong TQ (2018) A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Commun Surv Tutor 21(3):2734–2771

    Article  Google Scholar 

  40. Alsmadi MM, Ali NA, Hayajneh M, Ikki SS (2020) Down-link noma networks in the presence of iqi and imperfect sic: Receiver design and performance analysis. IEEE Trans Veh Technol 69(6):6793–6797

    Article  Google Scholar 

  41. Liu Y, Qin Z, Elkashlan M, Gao Y, Hanzo L (2017) Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Trans Wirel Commun 16(3):1656–1672

    Article  Google Scholar 

  42. Le Anh T, Hong IP (2020) Secrecy performance of a multi-noma-mimo system in the ueh relaying network using the pso algorithm. IEEE Access 9:2317–2331

    Article  Google Scholar 

  43. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks (IEEE), vol 4, pp 1942–1948

  44. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat No. 00TH8512) (IEEE), vol 1, pp 84–88

  45. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dac-Binh Ha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 1

Here, from Eq. 34 we derive the closed-form expression of \(P^{A}_{out}\) as follows.

$$\begin{array}{@{}rcl@{}} P^{A}_{out} &=& \Pr(C_{x_{A}} < C_{x_{A}}^{th})=\Pr \left( \frac{\rho_{0} \beta \gamma_{0} {g^{2}_{A}}}{(1-\rho_{0}) \beta \gamma_{0} {g^{2}_{B}}+1}<\gamma^{A}_{th}\right) \\ &=& {\int}_{0}^{\infty} F_{g_{A}}\left( \sqrt{a_{1} x^{2}+b_{1}}\right)f_{g_{B}}(x)dx \\ &=& \sum\limits_{i=0}^{M}\sum\limits_{j=1}^{N}\left( \begin{array}{c} M \\ i \end{array}\right)\left( \begin{array}{c} N \\ j \end{array}\right)\frac{(-1)^{i+j+1}j}{\lambda_{B}}\\ &&*{\int}_{0}^{\infty} e^{-\frac{i\sqrt{a_{1} x^{2}+b_{1}}}{\lambda_{A}}-\frac{jx}{\lambda_{B}}}dx \\ &&\overset{(a)}{=} \frac{\pi}{\lambda_{B} Q}\sum\limits_{i=0}^{M}\sum\limits_{j=1}^{N}\sum\limits_{q=1}^{Q}\left( \begin{array}{c} M \\ i \end{array}\right)\left( \begin{array}{c} N \\ j \end{array}\right)(-1)^{i+j+1}j\\ &&*e^{-\frac{i\sqrt{a_{1}{\theta_{q}^{2}}+b_{1}}}{\lambda_{A}}-\frac{j\theta_{q}}{\lambda_{B}}}\sqrt{\frac{1-\phi_{q}}{1+\phi_{q}}}. \end{array}$$
(A-1)

where \(a_{1}=\frac {(1-\rho _{0})\gamma ^{A}_{th}}{\rho _{0}}\), \(b_{1}=\frac {\gamma ^{A}_{th}}{\rho _{0} \beta \gamma _{0}}\), \(\phi _{q}=\cos \limits \left (\frac {2q-1}{2Q}\pi \right )\), \(\theta _{q}=\frac {\phi _{q}+1}{2}\). Note that step (a) is obtained by applying the Gaussian-Chebyshev quadrature method with Q are the complexity-vs-accuracy trade-off coefficients. This ends our proof.

Appendix B: Proof of Lemma 3

Here, we derive the closed-form expression of \({P^{A}_{s}}\) as follows.

$$\begin{array}{@{}rcl@{}} {P^{A}_{s}} &=& {\int}_{0}^{\infty}{\int}_{0}^{2^{{R^{A}_{s}}}(y+1)-1} f_{\gamma^{x_{A}}_{D}}\left( x\right)f_{\gamma^{x_{A}}_{E}}(y)dxdy \\ &=& {\int}_{0}^{\infty} F_{\gamma^{x_{A}}_{D}}\left( 2^{{R^{A}_{s}}}(y+1)-1\right)f_{\gamma^{x_{A}}_{E}}(y)dy \\ &=& \begin{cases} \sum\limits_{k=0}^{K}\left( \begin{array}{c} K \\ k \end{array}\right)\frac{(-1)^{k} \rho_{1}}{\lambda_{E}\gamma_{E}}\\ *{\int}_{0}^{c_{2}} \frac{e^{-\frac{k[2^{{R^{A}_{s}}}(y+1)-1]}{\lambda_{D} \gamma_{0} \{\rho_{1}-\rho_{2}[2^{{R^{A}_{s}}}(y+1)-1]\}}-\frac{y}{\lambda_{E} \gamma_{E}[\rho_{1}-(\rho_{2}+\rho_{3})y]}}}{[\rho_{1}-(\rho_{2}+\rho_{3})y]^{2}}dy\\ , c_{1} \geq c_{2}\\ \sum\limits_{k=0}^{K}\left( \begin{array}{c} K \\ k \end{array}\right)\frac{(-1)^{k} \rho_{1}}{\lambda_{E}\gamma_{E}}\\ *{\int}_{0}^{c_{1}} \frac{e^{-\frac{k[2^{{R^{A}_{s}}}(y+1)-1]}{\lambda_{D} \gamma_{0} \{\rho_{1}-\rho_{2}[2^{{R^{A}_{s}}}(y+1)-1]\}}-\frac{y}{\lambda_{E} \gamma_{E}[\rho_{1}-(\rho_{2}+\rho_{3})y]}}}{[\rho_{1}-(\rho_{2}+\rho_{3})y]^{2}}dy\\ +{\int}_{c_{1}}^{c_{2}}f_{\gamma^{x_{A}}_{E}}(y)dy\\ , c_{1} < c_{2} \end{cases} \\ &=& \begin{cases} I_{A}, & c_{1} \geq c_{2}\\ I_{A}+e^{-\frac{c_{1}}{\lambda_{E} \gamma_{E}[\rho_{1}-(\rho_{2}+\rho_{3})c_{1}]}}, & c_{1} < c_{2} \end{cases}, \end{array}$$
(B-2)

where

$$\begin{array}{@{}rcl@{}} I_{A} &&\overset{(b)}{=} \frac{\pi c}{2Q}\sum\limits_{k=0}^{K}\sum\limits_{q=1}^{Q}\left( \begin{array}{c} K \\ k \end{array}\right) * \sqrt{1-{\phi_{q}^{2}}}\\ &&\frac{(-1)^{k} \rho_{1}e^{-\frac{k[2^{{R^{A}_{s}}}(\theta_{q}+1)-1]}{\lambda_{D} \gamma_{0} \{\rho_{1}-\rho_{2}[2^{{R^{A}_{s}}}(\theta_{q}+1)-1]\}}-\frac{\theta_{q}}{\lambda_{E}\gamma_{E}[\rho_{1}-(\rho_{2}+\rho_{3})\theta_{q}]}}}{\lambda_{E}\gamma_{E}[\rho_{1}-(\rho_{2}+\rho_{3})\theta_{q}]^{2}}, \end{array}$$

\(c_{1} = \frac {\rho _{1}+\rho _{2}(1-2^{{R^{A}_{s}}})}{\rho _{2} 2^{{R^{A}_{s}}}}\), \(c_{2} = \frac {\rho _{1}}{\rho _{2}+\rho _{3}}\), \(c=\min \limits \{c_{1},c_{2}\}\), \(\phi _{q}=\cos \limits \left (\frac {2q-1}{2Q}\pi \right )\), \(\theta _{q}=\frac {(\phi _{q}+1)c}{2}\). Note that step (b) is obtained by applying the Gaussian-Chebyshev quadrature method with Q are the complexity-vs-accuracy trade-off coefficients. This concludes our proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, VL., Ha, DB., Truong, VT. et al. Secure Communication for RF Energy Harvesting NOMA Relaying Networks with Relay-User Selection Scheme and Optimization. Mobile Netw Appl 27, 1719–1733 (2022). https://doi.org/10.1007/s11036-022-01929-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-022-01929-3

Keywords

Navigation