Abstract
In this paper, an object-based video retrieval methodology for search in large, heterogeneous video collections is presented. The proposed approach employs a real-time, compressed-domain, unsupervised algorithm for the segmentation of image sequences to spatiotemporal objects. For the resulting objects, MPEG-7 compliant low-level descriptors describing their color, shape, position and motion characteristics are extracted. These are automatically associated using a fuzzy C-means algorithm with appropriate intermediate-level descriptors, which are part of a simple vocabulary termed object ontology. Combined with a relevance feedback mechanism, this scheme allows the qualitative definition of the high-level concepts the user queries for (semantic objects, each represented by a keyword) and relations between them, facilitating the retrieval of relevant video segments. Furthermore, it allows the collaborative construction of a knowledge base by accumulating the information contributed to the system during feedback by different users. Thus, it enables faster and more accurate retrieval of commonly requested keywords or semantic objects. Experimental results in the context of a collaborative environment demonstrate the efficiency of the proposed video indexing and retrieval scheme.









Similar content being viewed by others
References
Alberola C, Cardenes R, Martin M, Martin M, Rodriguez-Florido M, Ruiz-Alzola J (2000) diSNei: a collaborative environment for medical images analysis and visualization. In: Proc. Third Int. Conference on Medical Robotics, Imaging and Computer Assisted Surgery, Pittsburgh, Pennsylvania, pp 814–823
Al-Khatib W, Day Y, Ghafoor A, Berra P (1999) Semantic modeling and knowledge representation in multimedia databases. IEEE Trans Knowl Data Eng 11(1):64–80
Berlin B, Kay P (1969) Basic color terms: their universality and evolution. University of California, Berkeley
Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York
Bezdek J, Keller J, Krishnapuram R, Pal N (1999) Fuzzy models and algorithms for pattern recognition and image processing. Kluwer, Norwell, Massachusetts
Bozsak E, Ehrig M, Handschuh S, Hotho A, Maedche A, Motik B, Oberle D, Schmitz C, Staab S, Stojanovic L, Stojanovic N, Studer R, Stumme G, Sure Y, Tane J, Volz R, Zacharias V (2002) KAON—towards a large scale Semantic Web. In: Proc. Third Int. Conf. on E-Commerce and Web Technologies (EC-Web 2002). Aix-en-Provence, France
Chan S, Qing L, Wu Y, Zhuang Y (2002) Accommodating hybrid retrieval in a comprehensive video database management system. IEEE Trans Multimedia 4(2):146–159
Chandrasekaran B, Josephso J, Benjamins V (1999) What are ontologies, and why do we need them? IEEE Intell Syst 14(1):20–26
Chang S-F, Chen W, Meng H, Sundaram H, Zhong D (1998) A fully automated content-based video search engine supporting spatiotemporal queries. IEEE Trans Circuits Syst Video Technol 8(5):602–615
Chang S-F, Sikora T, Puri A (2001) Overview of the MPEG-7 standard. IEEE Trans Circuits Syst Video Technol, special issue on MPEG-7 11(6):688–695
Chen W, Chang S-F (2001) VISMap: an interactive image/video retrieval system using visualization and concept maps. In: Proc. IEEE Int. Conf. on Image Processing, Vol. 3, pp 588–591
Day Y, Dagtas S, Iino M, Khokhar A, Ghafoor A (1995) Spatio-temporal modeling of video data for on-line object-oriented query processing. In: Proc. Int. Conf. on Multimedia Computing and Systems, pp 98–105
Guo G-D, Jain A, Ma W-Y, Zhang H-J (2002) Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans Neural Netw 13(4):811–820
Huijsmans D, Sebe N (2001) Extended performance graphs for cluster retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2001), Vol. 1. Kauai, Hawaii, pp 26–31
Izquierdo E, Casas J, Leonardi R, Migliorati P, O’Connor N, Kompatsiaris I, Strintzis MG (2003) Advanced content-based semantic scene analysis and information retrieval: the schema project. In: Proc. Workshop on Image Analysis for Multimedia Interactive Services, London, UK
Karp P, Chaudhri V, Paley S (1999) A collaborative environment for authoring large knowledge bases. Journal of Intelligent Information Systems 13(3):155–194
Kim C, Hwang J-N (2002) Fast and automatic video object segmentation and tracking for content-based applications. IEEE Trans Circuits Syst Video Technol 12(2):122–129
Kiranyaz S, Caglar K, Guldogan E, Guldogan O, Gabbouj M (2003) MUVIS: a content-based multimedia indexing and retrieval framework. In: Proc. Seventh Int. Symposium on Signal Processing and its Applications, ISSPA 2003, Paris, France, pp 1–8
Kobla V, Doermann D, Lin K (1996) Archiving, indexing, and retrieval of video in the compressed domain. In: Proc. SPIE Conf. on Multimedia Storage and Archiving Systems, vol. 2916, pp 78–89
Lammens J (1994) A computational model of color perception and color naming. Ph.D. thesis, University of Buffalo
Manjunath B, Ohm J-R, Vasudevan V, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol, special issue on MPEG-7 11(6):703–715
Martin P, Eklund P (2000) Knowledge retrieval and the World Wide Web. IEEE Intell Syst 15(3):18–25
Mezaris V, Kompatsiaris I, Kokkinou E, Strintzis MG (2003) Real-time compressed-domain spatiotemporal video segmentation. In: Proc. Third Int. Workshop on Content-Based Multimedia Indexing (CBMI03)
Mezaris V, Kompatsiaris I, Strintzis MG (2003) An Ontology Approach to Object-based Image Retrieval. In: Proc. IEEE Int. Conf. on Image Processing (ICIP03), Barcelona, Spain
Mezaris V, Kompatsiaris I, Boulgouris N, Strintzis MG (2004) Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans Circuits Syst Video Technol 14(5):606–621
Mojsilovic A (2002) A method for color naming and description of color composition in images. In: Proc. IEEE Int. Conf. on Image Processing (ICIP02), New York, Rochester
MPEG-2 (1996) Generic coding of moving pictures and associated audio information. Technical report, ISO/IEC 13818
Naphade M, Huang T (2001) A probabilistic framework for semantic video indexing, filtering, and retrieval. IEEE Trans Multimedia 3(1):141–151
Naphade M, Huang T (2002) Extracting semantics from audio-visual content: the final frontier in multimedia retrieval. IEEE Trans Neural Netw 13(4):793–810
Naphade M, Yeung M, Yeo B (2000) A novel scheme for fast and efficient video sequence matching using compact signatures. In: Proc. SPIE Storage and Retrieval for Multimedia Databases, Vol. 3972, pp 564–572
Naphade MR, Kozintsev I, Huang T (2002) A factor graph framework for semantic video indexing. IEEE Trans Circuits Syst Video Technol 12(1):40–52
O’Connor N, Sav S, Adamek T, Mezaris V, Kompatsiaris I, Lui T, Izquierdo E, Bennstrom C, Casas J (2003) Region and object segmentation algorithms in the qimera segmentation platform. In: Proc. Third Int. Workshop on Content-Based Multimedia Indexing (CBMI03)
Schreiber A, Dubbeldam B, Wielemaker J, Wielinga B (2001) Ontology-based photo annotation. IEEE Intell Syst 16(3):66–74
Sikora T (2001) The MPEG-7 visual standard for content description—an overview. IEEE Trans Circuits Syst Video Technol, special issue on MPEG-7 11(6):696–702
TREC Video Track http://www-nlpir.nist.gov/projects/tv2004/
Tsechpenakis G, Akrivas G, Andreou G, Stamou G, Kollias S (2002) Knowledge-assisted video analysis and object detection. In: Proc. European Symp. on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems (Eunite02). Algarve, Portugal
Vapnik V (1998) Statistical learning theory. Wiley, New York
Visser R, Sebe N, Lew M (2002) Detecting automobiles and people for semantic video retrieval. In: Proc. 16th Int. Conf. on Pattern Recognition, Vol. 2, pp 733–736
Yoshitaka A, Ichikawa T (1999) A survey on content-based retrieval for multimedia databases. IEEE Trans Knowl Data Eng 11(1):81–93
Acknowledgments
This work was supported by the EU projects SCHEMA “Network of Excellence in Content-Based Semantic Scene Analysis and Information Retrieval” (IST-2001-32795), aceMedia “Integrating knowledge, semantics and content for user centred intelligent media services” (FP6-001765), and the Hungary - Greece bilateral cooperation project CIRCE: Content-Based and Semantic Multimedia Indexing and Retrieval in Collaborative Environments. The assistance of COST211 quat and COST292 is also gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mezaris, V., Kompatsiaris, I. & Strintzis, M.G. Object-based MPEG-2 video indexing and retrieval in a collaborative environment. Multimed Tools Appl 30, 255–272 (2006). https://doi.org/10.1007/s11042-006-0028-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-006-0028-0