Skip to main content
Log in

Spatial parameters for audio coding: MDCT domain analysis and synthesis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We use Modified Discrete Cosine Transform (MDCT) to analyze and synthesize spatial parameters. MDCT in itself lacks phase information and energy conservation, which are needed by spatial parameters representation. Completing MDCT with Modified Discrete Sine Transform (MDST) into “MDCT-j*MDST” overcomes this and enables the representation in a form similar to that of DFT. And due to overlap-add in time domain, a MDST spectrum can be built perfectly from MDCT spectra of neighboring frames through matrix-vector multiplication. The matrix is heavily diagonal and keeping only a small number of its sub-diagonals is sufficient for approximation. When using MDCT based core coder in spatial audio coding, like Advanced Audio Coding (AAC), we need no separate transforming for spatial processing, cutting down significantly the computational complexity. Subjective listening tests also show that MDCT domain spatial processing has no quality impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 3GPP specification Series TS 26.410 (2005) General audio codec audio processing functions; enhanced aacPlus general audio codec; floating-point ANSI-C code, http://www.3gpp.org/ftp/Specs/html-info/26-series.htm, Apr. 2005

  2. 3GPP Specification Series TS26.405 (2005) General audio codec audio processing functions; enhanced aacPlus general audio codec; encoder specification; parametric stereo part, http://www.3gpp.org/ftp/Specs/html-info/26-series.htm, Apr. 2005

  3. Algazi VR, Duda RO, Thompson DM, Avendano C (2001) The CIPIC HRTF database. Presented at IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics

  4. Baumgarte F, Faller C (2002a) Estimation of auditory spatial cues for binaural cue coding. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 1801–1804

  5. Baumgarte F, Faller C (2002b) Why binaural cue coding is better than intensity stereo coding. Presented at the 112th AES Convention, Munich, Germany

  6. Baumgarte F, Faller C (2003) Binaural cue coding—part I: psychoacoustic fundamentals and design principles. IEEE Trans Speech Audio Process 11:509–519. doi:10.1109/TSA.2003.818109

    Article  Google Scholar 

  7. Blauert J (1983) Spatial hearing: the psychophysics of human sound localization. MIT, USA

    Google Scholar 

  8. Bosi M, Goldberg R (2003) MPEG-2 AAC. In: Introduction to digital audio coding and standards, chap. 13. Kluwer Academic, USA, pp 333–367

  9. Bosi M, Brandenburg K, Quackenbush S, Fielder L, Akagiri K, Fuchs H, Dietz M (1997) ISO/IEC MPEG-2 advanced audio coding. J Audio Eng Soc 45(10):789–814

    Google Scholar 

  10. Breebaart J (2007) Analysis and synthesis of binaural parameters for efficient 3D audio rendering in MPEG Surround. In: IEEE International Conference on Multimedia and Expo, Beijing, China, pp 1878–1881

  11. Breebaart J, van de Par S, Kohlrausch A (2001) Binaural processing model based on contralateral inhibition. I. Model structure. J Acoust Soc Am 110:1074–1088. doi:10.1121/1.1383297

    Article  Google Scholar 

  12. Breebaart J, Disch S, Faller C, Herre J, Hotho G, Kjörling K, Myburg F, Neusinger M, Oomen W, Purnhagen H, Rödén J (2005a) MPEG spatial audio coding / MPEG Surround: overview and current status. Presented at the 119th AES Convention, New York

  13. Breebaart J, van de Par S, Kohlrausch A, Schuijers E (2005b) Parametric coding of stereo audio. EURASIP J Appl Signal Process 9:1305–1322. doi:10.1155/ASP.2005.1305

    Google Scholar 

  14. Breebaart J, Hotho G, Koppens J, Schuijers E, Oomen W, van de Par S (2007) Background, concept and architecture for the recent MPEG Surround standard on multi-channel audio compression. J Audio Eng Soc 55:331–351

    Google Scholar 

  15. Breebaart J, Villemoes L, Köjrling K (2008) Binaural rendering in MPEG Surround. EURASIP J. Advances in Signal Processing, Article ID 732895

  16. Cheng CI (2004) Method for estimating magnitude and phase in the MDCT domain. Presented at the 116th AES Convention, Berlin, Germany

  17. Disch S, Ertel C, Faller C, Herre J, Hilpert J, Hoelzer A, Kroon P, Linzmeier K, Spenger C (2004) Spatial audio coding: next-generation efficient and compatible coding of multi-channel audio. Presented at the 117th AES Convention, San Francisco, USA

  18. Engdegård J, Purnhagen H, Rödén J, Liljeryd L (2004) Synthetic ambience in parametric stereo coding. Presented at 116th AES Convention, Berlin, Germany

  19. Faller C (2004) Parametric coding of spatial audio. Ph.D. Dissertation, Institut de systèmes de communication, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

  20. Faller C (2006) Parametric multichannel audio coding: synthesis of coherence cues. IEEE Trans Audio Speech Lang Process 14:299–310. doi:10.1109/TSA.2005.854105

    Article  Google Scholar 

  21. Faller C, Baumgarte F (2001) Efficient representation of spatial audio using perceptual parameterization. Presented at IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York

  22. Faller C, Baumgarte F (2002a) Binaural cue coding: a novel and efficient representation of spatial audio. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 1841–1844

  23. Faller C, Baumgarte F (2002b) Binaural cue coding applied to stereo and multi-channel audio compression. Presented at the 11th AES Convention, Munich, Germany

  24. Faller C, Baumgarte F (2002c) Binaural cue coding applied to audio compression with flexible rendering. Presented at the 113th AES Convention, Los Angeles, USA

  25. Faller C, Baumgarte F (2003) Binaural cue coding—part II: schemes and applications. IEEE Trans Speech Audio Process 11:520–531. doi:10.1109/TSA.2003.818108

    Article  Google Scholar 

  26. Fliege NJ (1994) Modified DFT Polyphase SBC filter banks with almost perfect reconstruction. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 149–152

  27. Gilkey R, Anderson TR (eds) (1997) Binaural and spatial hearing in real and virtual environments. Erlbaum, Mahwah, NJ

    Google Scholar 

  28. Herre J (2004) From joint stereo to spatial audio coding-recent progress and standardization. In: Proc. of the 7th Int. Conference on Digital Audio Effects, Naples, Italy, Oct. 2004, pp. 157–162

  29. Herre J, Purnhagen H, Breebaart J, Faller C, Disch S, Kjörling K (2005) The reference model architecture for MPEG spatial audio coding. Presented at the 118th AES Convention, Barcelona, Spain

  30. Herre J, Köjrling K, Breebaart J, Faller C, Disch S, Purnhagen H, Koppens J, Hilpert J, Rödén J, Oomen W, Linzmeier K, Chong KS (2008) MPEG Surround—the ISO/MPEG standard for efficient and compatible multi-channel audio coding. J Audio Eng Soc 56:932–955

    Google Scholar 

  31. Hotho G, Villemoes LF, Breebaart J (2008) A backward-compatible multichannel audio codec. IEEE Trans Audio Speech Lang Process 16:83–93. doi:10.1109/TASL.2007.910768

    Article  Google Scholar 

  32. ISO/IEC JTC1/SC29/WG11 (2005) Information technology—generic coding of moving pictures and associated audio information—part 7: advanced audio coding (AAC), ISO/IEC 13818-7:2005(E)

  33. ISO/IEC JTC1/SC 29/WG11 (2006) MPEG Audio sub-group, Text of ISO/IEC 23003-1:2006/FCD, MPEG Surround

  34. ITU (2003) Method for the subjective assessment of intermediate quality level of coding systems, ITU-R BS.1534-1

  35. Joris P, Yin TCT (2006) A matter of time: internal delays in binaural processing. Trends Neurosci 30:70–78. doi:10.1016/j.tins.2006.12.004

    Article  Google Scholar 

  36. Karp T, Fliege NJ (1995) MDFT filter banks with perfect reconstruction. Presented at IEEE International Symposium on Circuits and Systems

  37. Malvar HS (1990) Lapped transforms for efficient transform/subband coding. IEEE Trans Acoust Speech Signal Process 38:969–978. doi:10.1109/29.56057

    Article  Google Scholar 

  38. Malvar HS (1991) Fast algorithm for modulated lapped transform. Electron Lett 27(9):775–776. doi:10.1049/el:19910482

    Article  Google Scholar 

  39. Malvar HS (1992) Signal processing with lapped transforms. Artech House, Norwood, MA

    MATH  Google Scholar 

  40. Malvar H (1999) A modulated complex lapped transform and its applications to audio processing. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 1421–1424

  41. Malvar HS (2003) Fast algorithm for the modulated complex lapped transform. IEEE Signal Process Lett 10:8–10. doi:10.1109/LSP.2002.806700

    Article  Google Scholar 

  42. Malvar HS, Staelin DH (1989) The LOT: transform coding without blocking effects. IEEE Trans Acoust Speech Signal Process 37:553–559. doi:10.1109/29.17536

    Article  Google Scholar 

  43. McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401. doi:10.1038/86049

    Article  Google Scholar 

  44. Mu-Huo C, Yu-Hsin H (2003) Fast IMDCT and MDCT algorithms—a matrix approach. IEEE Trans Signal Process 51:221–229. doi:10.1109/TSP.2002.806566

    Article  MathSciNet  Google Scholar 

  45. Munkong R, Biing-Hwang J (2008) Auditory perception and cognition. IEEE Signal Process Mag 25:98–117. doi:10.1109/MSP.2008.918418

    Article  Google Scholar 

  46. Plogsties J, Breebaart J, Herre J, Villemoes L, Jin C, Kjörling K, Koppens J (2006) MPEG Surround binaural rendering—surround sound for mobile devices. Presented at 24th Tonmeistertagung—VDT International Convention, Leipzig, Germany

  47. Princen J, Bradley A (1986) Analysis/synthesis filter bank design based on time domain aliasing cancellation. IEEE Trans Acoust Speech Signal Process 34:1153–1161. doi:10.1109/TASSP.1986.1164954

    Article  Google Scholar 

  48. Princen JP, Johnson AW, Bradley AB (1987) Subband/transform coding using filter bank designs based on time domain aliasing cancellation. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, pp 2161–2164

  49. Quackenbush S, Herre J (2005) MPEG Surround. IEEE Multimedia 12:18–23. doi:10.1109/MMUL.2005.76

    Article  Google Scholar 

  50. Roden J, Breebaart J, Hilpert J, Purnhagen H, Schuijers E, Koppens J, Linzmeier K, Holzer A (2007) A study of the MPEG Surround quality versus bit-rate curve. Presented at the 123rd AES Convention, New York, USA

  51. Schuijers EGP, Oomen AWJ, den Brinker AC, Gerrits AJ (2003) Advances in parametric coding for high-quality audio. Presented at the 114th AES Convention, Amsterdam, The Netherlands

  52. Schuijers E, Breebaart J, Purnhagen H, Engdegard J (2004) Low complexity parametric stereo coding. Presented at 116th AES Convention, Berlin, Germany

  53. Strutt JW (1907) (Lord Rayleigh), on our perception of sound direction. Philos Mag 13:214–232

    Google Scholar 

  54. Wang Y, Vilermo M (2003) Modified discrete cosine transform—its implications for audio coding and error concealment. J Audio Eng Soc 51:52–61

    Google Scholar 

Download references

Acknowledgement

This research was supported by National Science Foundation of China (grant 60832002) and MKE(Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) Support program supervised by the IITA(Institute of Information Technology Advancement) (IITA-2009-C1090-0902-0020)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyuk Park.

Appendix

Appendix

1.1 A. MDFT energy conservation

As in (3.a) and (3.b), \( {c_0}, \ldots, {c_{N - 1}}\,{\text{and}}\,{s_0}, \ldots, {s_{N - 1}} \) are 2N-dimensional basis vectors for MDCT and MDST respectively. The inner products between them are

$$ \left\{ {\begin{array}{*{20}{c}} {\left\langle {{c_k},{c_l}} \right\rangle = N\delta \left( {k - l} \right),}{k,l = 0, \ldots, N - 1} \\ {\left\langle {{s_k},{s_l}} \right\rangle = N\delta \left( {k - l} \right),}{k,l = 0, \ldots, N - 1} \\ {\left\langle {{c_k},{s_l}} \right\rangle = 0,}{k,l = 0, \ldots, N - 1} \\ \end{array} } \right., $$
(A.1)

where δ(•) is the unit impulse function. They compose an orthogonal basis for 2N-dimensional real vector space. Then for a time signal \( x(n),\,n = 0, \ldots, 2N - 1 \), and its MDCT spectrum X(k) and MDST spectrum \( Y(k),\,k = 0,...,2N - 1 \), their energy satisfies

$$ \begin{array}{*{20}{c}} {N\left\langle {x,x} \right\rangle } \\ { = \frac{1}{N}\left\langle {\sum\limits_{k = 0}^{N - 1} {\left( {X(k){c_k} + Y(k){s_k}} \right)}, \sum\limits_{k = 0}^{N - 1} {\left( {X(k){c_k} + Y(k){s_k}} \right)} } \right\rangle } \\ { = \left\langle {X,X} \right\rangle + \left\langle {Y,Y} \right\rangle = \left\langle {X + jY,X + jY} \right\rangle } \\ \end{array} . $$
(A.2)

This verifies that MDFT spectral energy is N times of temporal energy.

1.2 B. MDFT time shift and phase shift

From MDFT definition in (3.c), we have when time signal x(n) has a shift d and satisfies \( x\left( {n - 2N} \right) = - x(n) \), its MDFT spectrum as

$$ \begin{array}{*{20}{c}} {\tilde Z(k) = \sum\limits_{n = 0}^{2N - 1} {x\left( {n - d} \right)\exp \left[ { - j\frac{\pi }{N}\left( {n + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { = \sum\limits_{n = - d}^{2N - 1 - d} {x(n)\exp \left[ { - j\frac{\pi }{N}\left( {n + d + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { = \sum\limits_{n = 0}^{2N - 1 - d} {x(n)\exp \left[ { - j\frac{\pi }{N}\left( {n + d + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { - \sum\limits_{n = 2N - d}^{2N - 1} {x\left( {n - 2N} \right)\exp \left[ { - j\frac{\pi }{N}\left( {n + d + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { = Z(k)\exp \left[ { - j\frac{\pi }{N}d\left( {k + \frac{1}{2}} \right)} \right]} \\ \end{array}, $$
(A.3)

where Z(k) is MDFT spectrum of x(n) without shift. The condition \( x\left( {n - 2N} \right) = - x(n) \) parallels DFT’s requirement of periodicity but with a negative sign. For real signals and d<<2N, (A.4) is an approximation.

1.3 C. Windowed MDFT

Note X(k) and Y(k) are sine-windowed MDCT spectrum and cosine-windowed MDST spectrum respectively. Then we have

$$ \begin{array}{*{20}{c}} {{Z_{+} }(k) = Y(k) + X(k)} \\ { = \sum\limits_{n = 0}^{2N - 1} {x(n)\cos \left[ {\frac{\pi }{2N}\left( {n + \frac{1}{2}} \right)} \right]\sin \left[ {\frac{\pi }{N}\left( {n + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { + \sum\limits_{n = 0}^{2N - 1} {x(n)\sin \left[ {\frac{\pi }{2N}\left( {n + \frac{1}{2}} \right)} \right]\cos \left[ {\frac{\pi }{N}\left( {n + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { = - \sum\limits_{n = 0}^{2N - 1} {x(n)\cos \left[ {\frac{\pi }{N}n\left( {k + 1} \right) + \frac{\pi }{N}\left( {k + 1} \right)\left( {\frac{1}{2} + \frac{N}{2}} \right) + \frac{\pi }{4}} \right]} } \\ \end{array}, $$
(A.4)

and

$$ \begin{array}{*{20}{c}} {{Z_{-} }(k) = Y(k) - X(k)} \\ { = \sum\limits_{n = 0}^{2N - 1} {x(n)\cos \left[ {\frac{\pi }{2N}\left( {n + \frac{1}{2}} \right)} \right]\sin \left[ {\frac{\pi }{N}\left( {n + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { - \sum\limits_{n = 0}^{2N - 1} {x(n)\sin \left[ {\frac{\pi }{2N}\left( {n + \frac{1}{2}} \right)} \right]\cos \left[ {\frac{\pi }{N}\left( {n + \frac{1}{2} + \frac{N}{2}} \right)\left( {k + \frac{1}{2}} \right)} \right]} } \\ { = \sum\limits_{n = 0}^{2N - 1} {x(n)\sin \left[ {\frac{\pi }{N}nk + \frac{\pi }{N}k\left( {\frac{1}{2} + \frac{N}{2}} \right) + \frac{\pi }{4}} \right]} } \\ \end{array} . $$
(A.5)

Take (A.4) and (A.5) as real part and imaginary part respectively,

$$ \begin{array}{*{20}{c}} { - {Z_{+} }\left( {k - 1} \right) - j{Z_{-} }(k)} \\ { = \sum\limits_{n = 0}^{2N - 1} {x(n)\cos \left[ {\frac{\pi }{N}nk + \frac{\pi }{N}k\left( {\frac{1}{2} + \frac{N}{2}} \right) + \frac{\pi }{4}} \right]} } \\ { - j\sum\limits_{n = 0}^{2N - 1} {x(n)\sin \left[ {\frac{\pi }{N}nk + \frac{\pi }{N}k\left( {\frac{1}{2} + \frac{N}{2}} \right) + \frac{\pi }{4}} \right]} } \\ { = \exp \left\{ { - j\left[ {\frac{\pi }{N}k\left( {\frac{1}{2} + \frac{N}{2}} \right) + \frac{\pi }{4}} \right]} \right\}\sum\limits_{n = 0}^{2N - 1} {x(n)\exp \left[ { - j\frac{\pi }{N}nk} \right]} } \\ \end{array}, $$
(A.6)

which is 2N-point DFT with a phase shift. Moreover with \( {Z_{+} }\left( { - 1} \right) = - {Z_{-} }(0)\,{\text{and}}\,{Z_{-} }(N) = {Z_{+} }\left( {N - 1} \right) \), (A.6) leads to (5.a).

1.4 D. Properties of MDCT and MDST transform matrices

From (6), we can see each column vector of C 0 and S 1 are odd-symmetric, and each column vector of C 1 and S 0 are even-symmetric. With the help of anti-diagonal matrix J having only 1 on its anti-diagonal, the symmetries are equivalent to \( {\mathbf{J}}{{\mathbf{C}}_0} = - {{\mathbf{C}}_0},{\mathbf{J}}{{\mathbf{S}}_1} = - {{\mathbf{S}}_1}\,{\text{and}}\,{\mathbf{J}}{{\mathbf{C}}_1} = {{\mathbf{C}}_1},{\mathbf{J}}{{\mathbf{S}}_0} = {{\mathbf{S}}_0} \) respectively. From this and \( {{\mathbf{J}}^{\text{T}}}{\mathbf{J}} = {\mathbf{JJ}} = {\mathbf{I}} \), we have

$$ {\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_0} = {\mathbf{S}}_0^{\text{T}}{{\mathbf{J}}^{\text{T}}}{\mathbf{J}}{{\mathbf{C}}_0} = {\left( {{\mathbf{J}}{{\mathbf{S}}_0}} \right)^{\text{T}}}\left( {{\mathbf{J}}{{\mathbf{C}}_0}} \right) = - {\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_0}, $$
(A.7)

which implies \( {\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_0} = {\mathbf{0}} \). And for the same reason, \( {\mathbf{S}}_1^{\text{T}}{{\mathbf{C}}_1} = {\mathbf{0}} \). For the windowed case, from the second equation of (14) W 1=JW 0 J and that W 0 and W 1 are diagonal matrices then W 0 W 1=W 1 W 0, we have

$$ \begin{array}{*{20}{c}} {{\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_1}{{\mathbf{W}}_0}{{\mathbf{C}}_0} = {\mathbf{S}}_0^{\text{T}}{{\mathbf{J}}^{\text{T}}}{\mathbf{J}}{{\mathbf{W}}_1}{\mathbf{JJ}}{{\mathbf{W}}_0}{\mathbf{JJ}}{{\mathbf{C}}_0}} \\ { = {{\left( {{\mathbf{J}}{{\mathbf{S}}_0}} \right)}^{\text{T}}}\left( {{\mathbf{J}}{{\mathbf{W}}_1}{\mathbf{J}}} \right)\left( {{\mathbf{J}}{{\mathbf{W}}_0}{\mathbf{J}}} \right)\left( {{\mathbf{J}}{{\mathbf{C}}_0}} \right)} \\ { = - {\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_0}{{\mathbf{W}}_1}{{\mathbf{C}}_0}} \\ { = - {\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_1}{{\mathbf{W}}_0}{{\mathbf{C}}_0}} \\ \end{array}, $$
(A.8)

which implies \( {\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_1}{{\mathbf{W}}_0}{{\mathbf{C}}_0} = {\mathbf{0}} \). And for the same reason, \( {\mathbf{S}}_1^{\text{T}}{{\mathbf{W}}_0}{{\mathbf{W}}_1}{{\mathbf{C}}_1} = {\mathbf{0}} \). Also by similar procedure as (A.8), we have \( {\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_1}{{\mathbf{W}}_1}{{\mathbf{C}}_1} = {\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_0}{{\mathbf{W}}_0}{{\mathbf{C}}_1} \). From this and with the help of the first equation of (14) \( {{\mathbf{W}}_0}{{\mathbf{W}}_0} + {{\mathbf{W}}_1}{{\mathbf{W}}_1} = {\mathbf{I}} \), we can see

$$ \begin{array}{*{20}{c}} {{\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_1}{{\mathbf{W}}_1}{{\mathbf{C}}_1} = \frac{1}{2}\left( {{\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_0}{{\mathbf{W}}_0}{{\mathbf{C}}_1} + {\mathbf{S}}_0^{\text{T}}{{\mathbf{W}}_1}{{\mathbf{W}}_1}{{\mathbf{C}}_1}} \right)} \\ { = \frac{1}{2}{\mathbf{S}}_0^{\text{T}}\left( {{{\mathbf{W}}_0}{{\mathbf{W}}_0} + {{\mathbf{W}}_1}{{\mathbf{W}}_1}} \right){{\mathbf{C}}_1}} \\ { = \frac{1}{2}{\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_1}} \\ \end{array} . $$
(A.9)

And for the same reason, \( {\mathbf{S}}_1^{\text{T}}{{\mathbf{W}}_0}{{\mathbf{W}}_0}{{\mathbf{C}}_0} = {\mathbf{S}}_1^{\text{T}}{{\mathbf{C}}_0}/2 \).

1.5 E. Properties of the conversion matrix T

As in (7.b), P is a matrix having only \( + 1, - 1, + 1, - 1, \ldots, \) on its diagonal, implying PP T=I. And with \( {{\mathbf{S}}_0} = - {{\mathbf{C}}_1}{\mathbf{P}},{{\mathbf{S}}_1} = {{\mathbf{C}}_0}{\mathbf{P}} \) in (7.b), we have \( {{\mathbf{S}}_1}{\mathbf{S}}_1^{\text{T}} = {{\mathbf{C}}_0}{\mathbf{C}}_0^{\text{T}},\,{{\mathbf{S}}_0}{\mathbf{S}}_0^{\text{T}} = {{\mathbf{C}}_1}{\mathbf{C}}_1^{\text{T}},\,{{\mathbf{S}}_0}{\mathbf{S}}_1^{\text{T}} = - {{\mathbf{C}}_1}{\mathbf{C}}_0^{\text{T}},\,{{\mathbf{S}}_1}{\mathbf{S}}_0^{\text{T}} = - {{\mathbf{C}}_0}{\mathbf{C}}_1^{\text{T}} \). With the help of \( {\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1} = N{\mathbf{I}}\,{\text{and}}\,{{\mathbf{C}}_1}{\mathbf{C}}_0^T = {{\mathbf{C}}_0}{\mathbf{C}}_1^T = {\mathbf{0}} \) in (7.a), the conversion matrix defined in (10.b) is orthogonal, or

$$ \begin{array}{*{20}{c}} {{{\mathbf{T}}^{\text{T}}}{\mathbf{T}} = \frac{1}{N^2}{{\left( {{\mathbf{S}}_1^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_1}} \right)}^{\text{T}}}\left( {{\mathbf{S}}_1^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_1}} \right)} \\ { = \frac{1}{N^2}\left( {{\mathbf{C}}_0^{\text{T}}{{\mathbf{S}}_1}{\mathbf{S}}_1^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{S}}_0}{\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_1} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{S}}_0}{\mathbf{S}}_1^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_0^{\text{T}}{{\mathbf{S}}_1}{\mathbf{S}}_0^{\text{T}}{{\mathbf{C}}_1}} \right)} \\ { = \frac{1}{N^2}\left( {{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0}{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}{\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1} - {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} - {\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0}{\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}} \right)} \\ { = \frac{1}{N^2}\left( {{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0}{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}{\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0}{\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}} \right)} \\ { = \frac{1}{N^2}\left( {{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}} \right)\left( {{\mathbf{C}}_0^{\text{T}}{{\mathbf{C}}_0} + {\mathbf{C}}_1^{\text{T}}{{\mathbf{C}}_1}} \right)} \\ { = {\mathbf{I}}} \\ \end{array} . $$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Xiong, N., Hyuk Park, J. et al. Spatial parameters for audio coding: MDCT domain analysis and synthesis. Multimed Tools Appl 48, 225–246 (2010). https://doi.org/10.1007/s11042-009-0326-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0326-4

Keywords