Skip to main content
Log in

Stereo panorama acquisition and automatic image disparity adjustment for stereoscopic visualization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image-based visualization is popular for various virtual tour applications, due to high-quality photorealism or simplicity for rendering. Stereo panorama representations of the virtual world are already a common part of this, either in small (computer screen) format or on large-scale stereo displays or screens. This paper discusses methods for determining optimum parameters, both for high-accuracy stereo panoramic image recording and displaying, with a special focus on automatic image disparity enhancement while displaying (e.g., including zooming) a stereo panorama. Experiments show that the discussed parameters are indeed critical for ensuring high-quality stereo viewing. Derived formulas in this study are applicable to various kinds of technologies for stereo panorama imaging or stereoscopic displaying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. This includes both crossed (i.e., negative, in front of the viewing medium) and uncrossed (i.e., positive, behind the viewing medium) disparity values.

  2. Three CCD or CMOS lines, for red, green or blue channels, form the linear sensor-cell array.

  3. In this paper we use length of a panorama rather than width of a panorama (as in earlier publications) because we will speak about the length of the circumference of the image cylinder.

  4. These two values are symmetric with respect to the normal of the base circle, see Fig. 8.

  5. The definition of a square pixel is actually only valid for a planar image surface. Imagine that the cylindrical capturing surface is unrolled and flattened; this defines a planar surface which allows to apply the Euclidean metric, but, it is, obviously, geometrically different to the original non-Euclidean capturing surface.

References

  1. Chen C-W, Chan L-W, Tsai Y-P, Hung Y-P (2006) Augmented stereo panoramas. In: Proc. ACCV, LNCS 3851, pp 41–49

  2. Chen SE (1995) Quick Time VR—an image-based approach to virtual environment navigation. In: Proc. SIGGRAPH, pp 29–38

  3. Howard I, Rogers B (1995) Binocular vision and stereopsis. Oxford psychology series No.29. Oxford University Press, New York

    Google Scholar 

  4. Huang F, Klette R, Scheibe, K (2008) Panoramic imaging: sensor-line cameras and laser range-finders. Wiley, Chichester

    Google Scholar 

  5. Huang F, Klette R, Wei SK, Börner A, Reulke R, Scheele M, Scheibe K (2001) Hyper-resolution and polycentric panorama acquisition and experimental data collection. CITR-TR-90, Computer Science, The University of Auckland

  6. Huang F, Wei S-K, Klette R (2001) Geometrical fundamentals of polycentric panoramas. In: Proc. ICCV, pp 560–565

  7. Huang H-C, Hung Y-P (1998) Panoramic stereo imaging system with automatic disparity warping and seaming. GMIP 60:196–208

    Google Scholar 

  8. Ishiguro H, Yamamoto M, Tsuji S (1992) Omni-directional stereo. IEEE Trans Pattern Anal Mach Comm 14:257–262

    Article  Google Scholar 

  9. Jiang W, Okutomi M, Sugimoto S (2006) Panoramic 3D reconstruction using rotational stereo camera with simple epipolar constraints. In: Proc. CVPR, vol 1, pp 371–378

  10. Kawanishi T, Yamazawa K, Iwasa H, Takemura H, Yokoya N (1998) Generation of high-resolution stereo panoramic images by omnidirectional sensor using hexagonal pyramidal mirrors. In: Proc. ICPR, pp 485–489

  11. Konrad J (1999) Enhancement of viewer comfort in stereoscopic viewing: parallax adjustment. In: Proc. SPIE vol 3639, pp 179–190

  12. KST (2008) KST Eyescan M3D. http://www.kst-dresden.de/produkte.php?site=25&lang=en&katid=3

  13. Murakami M (2006) StereoMaker and stereo panoramas. http://www.stereomaker.net/eng/

  14. NASA (1998) Mars Pathfinder. http://mars.jpl.nasa.gov/MPF/vrml/qtvr_stereo.html

  15. NASA (2007) STEREO project. http://www.nasa.gov/mission_pages/stereo/main/

  16. Nayar S (1997) Catadioptric omnidirectional cameras. In: Proc. CVPR, pp 482–488

  17. Humboldt-Universität zu Berlin (2005) Panoramic Photogrammetry Workshop. http://www2.informatik.hu-berlin.de/sv/pr/PanoramicPhotogrammetryWorkshop2005/

  18. Panoscan (2008) Panoscan MK-3. http://www.panoscan.com/MK3/

  19. Peleg S, Ben-Ezra M (1999) Stereo panorama with a single camera. In: Proc. CVPR’99, pp 395–401

  20. Peleg S, Pritch Y, Ben-Ezra M (2000) Cameras for stereo panoramic imaging. In: Proc. CVPR, pp 208–214

  21. Reulke R, Scheele M (1998) Der drei-Zeilen CCD-Stereoscanner WAAC: Grundaufbau und Anwendungen in der photogrammetrie. Photogramm Fernerkund Geoinf 3:157–163

    Google Scholar 

  22. Seitz S, Kim J (2002) The space of all stereo images. Int Computer J Vision 48:21–38

    Article  MATH  Google Scholar 

  23. Shum H-Y, He L-W (1999) Rendering with concentric mosaics. In: Proc. SIGGRAPH, pp 299–306

  24. Shum H-Y, Szeliski R (1999) Stereo reconstruction from multiperspective panoramas. In: Proc. Int. Conf. Computer Vision, pp 14–21

  25. Stürzl W, Mallot HA (2002) Vision-based homing with panoramic stereo sensor. In: Proc. BMCV, LNCS 2525, pp 620–628

  26. Valyrus N (1966) Stereoscopy. Focal, London

    Google Scholar 

  27. Viire E (1997) Health and safety issues for VR. Comm ACM 40:40–41

    Article  Google Scholar 

  28. Wang C, Sawchuk AA (2006) Region based stereo panorama disparity adjusting. In: Proc. MMSP, pp 186–191

  29. Ware C, Gobrecht C, Paton M (1998) Dynamic adjustment of stereo display parameters. IEEE Trans Syst Man Cybern 28:56–65

    Article  Google Scholar 

  30. Wei S-K, Huang F, Klette R (1999) Three-dimensional scene navigation through anaglyphic panorama visualization. In: Proc. CAIP, LNCS 1689, pp 542–549

Download references

Acknowledgements

This project is partially sponsored by the National Science Council, Republic of China, November 2006, (grant no. NSC 95-2218-E-197-001). Both authors thank colleagues at DLR Berlin-Adlershof for collaboration and support, especially with respect to data and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fay Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Klette, R. Stereo panorama acquisition and automatic image disparity adjustment for stereoscopic visualization. Multimed Tools Appl 47, 353–377 (2010). https://doi.org/10.1007/s11042-009-0328-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0328-2

Keywords

Navigation