Skip to main content
Log in

An interleaving crescent broadcasting protocol for near video-on-demand services

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This work presents a novel interleaving crescent broadcasting protocol for near video-on-demand service. The interleaving crescent broadcasting protocol is a trade-off among the subscriber’s access latency, maximum buffer requirement, needed subscriber’s bandwidth, and maximum disk I/O transfer rate. A longer subscriber’s access latency may cause a subscriber to leave. A lower maximum buffer requirement, a lower needed subscriber’s bandwidth, and a lower maximum disk I/O transfer rate reduce subscribers’ costs. The interleaving crescent broadcasting protocol not only makes access latency shorter, but also lowers the overall system’s cost. We prove the correctness of the interleaving crescent protocol; provide mathematical analyses to demonstrate its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chang YH, Coggins D, Pitt D, Skellern D (1994) An open-system approach to video on demand. IEEE Commun Mag 32:68–80

    Article  Google Scholar 

  2. Chen YW (2004) An enhanced recursive frequency splitting broadcasting algorithm for near video-on-demand services. Inf Process Lett 92:299–302

    Article  MATH  Google Scholar 

  3. Chen YW, Hsieh CY (2007) An interleaving slotted-polyharmonic-staircase broadcasting protocol for near video-on-demand services. Comput Commun 30(4):807–817

    Article  MathSciNet  Google Scholar 

  4. Dan A, Sitaram D, Shahabuddin P (1996) Dynamic batching policies for an on-demand video server. Multimedia Syst 4:112–121

    Article  Google Scholar 

  5. Gao L, Kurose J, Towsley D (2002) Efficient schemes for broadcasting popular videos. Multimedia Syst 8:284–294

    Article  Google Scholar 

  6. Ghose D, Kim HJ (2000) Scheduling video streams in video-on-demand systems: a survey. Multimedia Tools and Applications 11:167–195

    Article  Google Scholar 

  7. Guo Y, Gao L, Towsley D, Sen S (2004) Smooth workload adaptive broadcast. IEEE Trans Multimedia 6(2):387–395

    Article  Google Scholar 

  8. Hu A (2001) Video-on-demand broadcasting protocols: a comprehensive study. IEEE INFOCOM, pp 508–517

  9. Juhn LS, Tseng LM (1997) Staircase data broadcasting and receiving scheme for hot video service. IEEE Trans. on Consum Electron 43(4):1110–1117

    Article  Google Scholar 

  10. Juhn LS, Tseng LM (1998) Fast data broadcasting and receiving scheme for popular video service. IEEE Trans Broadcast 44:100–105

    Article  Google Scholar 

  11. Li ZN, Drew MS (2004) Fundamentals of multimedia. Prentice Hall, Chap. 16

  12. Pâris JF (2001) A fixed-delay broadcasting protocol for video-on-demand. Proc. of the 10th International Conf. on Computer Communications and Networks (ICCCN’01), pp 418–423

  13. Pâris JF, Carter SW, Long D-D (1999) A hybrid broadcasting protocol for video on demand. In Multimedia Computing and Networking, pp 317–326

  14. Tseng YC, Yang MH, Chang CH (2002) A recursive frequency-splitting scheme for broadcasting hot videos in VOD service. IEEE Trans Commun 50(8):1348–1355

    Article  Google Scholar 

  15. Yan E, Kameda T (2006) Generalized fibonacci broadcasting: an efficient VOD broadcasting scheme with user bandwidth limit. Discrete Appl Math 154(16):2418–2429

    Article  MATH  MathSciNet  Google Scholar 

  16. Yang HC, Yu HF, Tseng LM, Chen YM (2004) Interleaving staircase broadcasting and receiving scheme with loss-anticipation delivery. Proceedings of International Conference on Internet Computing, Las Vegas, Nevada, USA

  17. Yu HF (2008) Hybrid broadcasting with small buffer demand and waiting time for video-on-demand applications. IEEE Trans Broadcast 54(2):304–311

    Article  Google Scholar 

  18. Yu HF, Yang HC, Tseng LM (2007) Reverse fast broadcasting (RFB) for video-on-demand applications. IEEE Trans Broadcast 53(1):103–111

    Article  Google Scholar 

  19. Yu HF, Chen YN, Yang HC, Yang ZY, Tseng LM (2008) An efficient scheme for broadcasting popular videos at low buffer demand. Comput Commun 31(10):2270–2279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wei Chen.

Additional information

This work was supported in part by NSC98-2221-E027-121.

Appendix A. Proof of Lemma 5

Appendix A. Proof of Lemma 5

By Theorem 4, we only consider the sum of the rates at which data is transferred from four consecutive channels to the subscriber’s disk. Let R(t) be the disk input transfer rate in the time slot t, \( size\left( {i,x} \right)\,\left( { = d \cdot b/div(n)} \right) \) be the amount of data which can be transferred within one time slot in the subsubchannel \( C\left[ n \right]\left( { = C_{{i,1}}^x } \right),\,D\left( {t,i,x} \right) \) be the amount of incoming data from subchannel \( C_i^x \) where t is a time slot, \( 3 \le i \le k \) and x∈{A,B}. Let us consider 11 cases of the value R(t) in time slots \( \beta_i^A, \gamma_{{i + 1}}^A, \beta_i^B, \gamma_{{i + 1}}^B, \alpha_{{i + 3}}^A \left( { = \alpha_{{i + 3}}^B } \right),\delta_i^B \left( { = \beta_{{i + 1}}^A - 1} \right) \) and the variation \( R\left( {t + 1} \right) - R(t) \) for each time slot, \( \beta_i^A \le t \le \beta_{{i + 1}}^A \), to show this lemma.

Case 1:

\( t = \beta_i^A . \) In this case,\( D\left( {t,i,A} \right) = D\left( {t,i,B} \right) = db/2 \), \( D\left( {t,l,x} \right) \ne 0 \) for \( l = i + 1,\,i + 2 \), and \( D\left( {t,i + 3,x} \right) = 0 \) for x∈{A,B} because \( \alpha_{{i + 3}}^A = \alpha_{{i + 3}}^B > \beta_i^A \). However, these data are evenly downloaded in time interval d. Therefore,

$$ \begin{array}{*{20}c} {R(t) = \left( {\sum\limits_{{\begin{array}{*{20}c} {l = i,i + 1,\,i + 2,} \hfill \\ {x \in \left\{ {A,B} \right\}} \hfill \\ \end{array} }} {D\left( {t,l,x} \right)} } \right)/d = b + \left( {\sum\limits_{{\begin{array}{*{20}c} {l = i + 1,\,i + 2} \hfill \\ {x \in \left\{ {A,B} \right\}} \hfill \\ \end{array} }} {D\left( {t,l,x} \right)} } \right)/d = b + \frac{1}{d} \cdot \left( {\sum\limits_{{x \in \left\{ {A,B} \right\}}} {D\left( {t,i + 1,x} \right)} + \sum\limits_{{x \in \left\{ {A,B} \right\}}} {D\left( {t,i + 2,x} \right)} } \right)} \\ { = b + \frac{1}{d} \cdot \left( {\left( {\beta_i^A - \alpha_{{i + 1}}^A + 1} \right)\left( {size\left( {i + 1,A} \right) + size\left( {i + 1,B} \right)} \right) + \left( {\beta_i^A - \alpha_{{i + 2}}^A + 1} \right)\left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {3 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {4 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {4 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + 2^{{i - 3}} \cdot \left( {db/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {15 \cdot db/24 + 5 \cdot db/48} \right) = 83b/48.} \\ \end{array} $$

Case 2:

\( \beta_i^A \le t<\gamma_{{i + 1}}^A . \) In this case, we show R(t+1) is larger than R(t) by the following equation.

$$ \begin{array}{*{20}c} {R\left( {t + 1} \right) - R(t) = \left( { - size\left( {i,A} \right) + \left( {\left( {size\left( {i + 1,A} \right) + size\left( {i + 1,B} \right) + size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right.} \right)} \right)/d} \\ { = - b/\left( {2 \cdot 2 \cdot 2^{{i - 3}} } \right) + b/\left( {4 \cdot 2 \cdot 2^{{i - 3}} } \right) + b/\left( {4 \cdot 3 \cdot 2^{{i - 3}} } \right) + b/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + b/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right) = b/\left( {16 \cdot 2^{{i - 3}} } \right) > 0.} \\ \end{array} $$

Case 3:

\( t = \gamma_{{i + 1}}^A . \) In this case, \( D\left( {t,i,A} \right) \ne 0 \), \( D\left( {t,i,B} \right) = D\left( {t,i + 1,A} \right) = db/2 \), \( D\left( {t,i + 1,B} \right) \ne 0 \), \( D\left( {t,i + 2,x} \right) \ne 0 \), and \( D\left( {t,i + 3,x} \right) = 0 \) for x∈{A,B} because \( \alpha_{{i + 3}}^A = \alpha_{{i + 3}}^B > \gamma_{{i + 1}}^A \). Therefore,

$$ \begin{array}{*{20}c} {R(t) = \left( {\sum\nolimits_{{\begin{array}{*{20}c} {l = i,i + 1,i + 2,} \hfill \\ {x \in \left\{ {A,B} \right\}} \hfill \\ \end{array} }} {D\left( {t,l,x} \right)} } \right)/d = D\left( {t,i,A} \right)/d + b/2 + b/2 + D\left( {t,i + 1,B} \right)/d + \left( {\sum\nolimits_{{x \in \left\{ {A,B} \right\}}} {D\left( {t,i + 2,x} \right)} } \right)/d} \\ { = b\left( {1/d} \right) \cdot \left( {\left( {\delta_i^A - \gamma_{{i + 1}}^A + 1} \right)\left( {size\left( {i,A} \right)} \right) + \left( {\gamma_{{i + 1}}^A - \alpha_{{i + 1}}^B + 1} \right)\left( {size\left( {i + 1,B} \right)} \right) + \left( {\gamma_{{i + 1}}^A - \alpha_{{i + 2}}^A + 1} \right)\left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {2^{{i - 3}} \cdot \left( {db/\left( {4 \cdot 2^{{i - 3}} } \right)} \right) + 4 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {4 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + 2 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {db/4 + db/3 + 5db/24} \right) = 86b/48.} \\ \end{array} $$

Case 4:

\( \gamma_{{i + 1}}^A \le t<\beta_i^B . \) In this case, we show R(t+1) is smaller than R(t) by the following equation.

$$ \begin{array}{*{20}c} {R\left( {t + 1} \right) - R(t) = \left( { - size\left( {i,A} \right) + \left( {size\left( {i + 1,B} \right) + size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right)} \right)/d} \\ { = \left\{ {\left[ { - size\left( {i,A} \right) + \left( {size\left( {i + 1,A} \right) + size\left( {i + 1,B} \right) + size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right)} \right] - size\left( {i + 1,A} \right)} \right\}/d.} \\ \end{array} $$

By Case 2: \( \beta_i^A \le t<\gamma_{{i + 1}}^B, \;R\left( {t + 1} \right) - R(t) = b/\left( {16 \cdot 2^{{i - 3}} } \right) - size\left( {i + 1,A} \right)/d = b\left( {16 \cdot 2^{{i - 3}} } \right) - b/\left( {4 \cdot 2 \cdot 2^{{i - 3}} } \right) = - b/\left( {16 \cdot 2^{{i - 3}} } \right)<0. \)

Case 5:

\( t = \beta_i^B \). In this case, \( D\left( {t,i,A} \right) = 0 \), \( D\left( {t,i,B} \right) = D\left( {t,i + 1,A} \right) = db/2 \), \( D\left( {t,i + 1,B} \right) \ne 0 \), \( D\left( {t,i + 2,x} \right) \ne 0 \), and \( D\left( {t,i + 3,x} \right) = 0 \) for x∈{A,B} because \( \alpha_{{i + 3}}^A = \alpha_{{i + 3}}^B > \beta_i^B \). Therefore,

$$ \begin{array}{*{20}c} {R(t) = b/2 + b/2 + D\left( {t,i + 1,B} \right)/d + \left( {\sum\nolimits_{{x \in \left\{ {A,B} \right\}}} {D\left( {t,i + 2,x} \right)} } \right)/d} \\ { = b + \left( {1/d} \right) \cdot \left( {\left( {\beta_i^B - \alpha_{{i + 1}}^B + 1} \right)\left( {size\left( {i + 1,B} \right)} \right) + \left( {\beta_i^B - \alpha_{{i + 2}}^A + 1} \right)\left( {size\left( {i + 2,A} \right) + \left( {size\left( {i + 2,B} \right)} \right.} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {5 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {4 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + 3 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {5db/12 + 15db/48} \right) = b\left( {1 + 5/12 + 15/48} \right) = 83b/48.} \\ \end{array} $$

Case 6:

\( \beta_i^B \le t<\gamma_{{i + 1}}^B . \) In this case, we show R(t+1) is larger than R(t) by the following equation.

$$ \begin{array}{*{20}c} {R\left( {t + 1} \right) - T(t) = \left( { - size\left( {i,B} \right) + \left( {size\left( {i + 1,B} \right) + size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right)} \right)/d} \\ { = - b/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + b/\left( {4 \cdot 3 \cdot 2^{{i - 3}} } \right) + b/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + b/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right) = b/\left( {48 \cdot 2^{{i - 3}} } \right) > 0.} \\ \end{array} $$

Case 7:

\( t = \gamma_{{i + 1}}^B \). In this case, \( D\left( {t,i,A} \right) = 0 \), \( D\left( {t,i,B} \right) \ne 0 \), \( D\left( {t,i + 1,x} \right) = db/2 \), \( D\left( {t,i + 2,x} \right) \ne 0 \), and \( D\left( {t,i + 3,x} \right) = 0 \) for x∈{A,B} because \( \alpha_{{i + 3}}^A = \alpha_{{i + 3}}^B > \gamma_{{i + 1}}^B \). Therefore,

$$ \begin{array}{*{20}c} {R(t) = D\left( {t,i,B} \right)/d + b/2 + b/2 + \left( {\sum\nolimits_{{x \in \left\{ {A,B} \right\}}} {D\left( {t,i + 2,x} \right)} } \right)/d} \\ { = b + \left( {1/d} \right) \cdot \left( {\left( {\delta_i^B - \gamma_{{i + 1}}^B + 1} \right)\left( {size\left( {i,B} \right)} \right) + \left( {\gamma_{{i + 1}}^B - \alpha_{{i + 2}}^A + 1} \right)\left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {2 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + 4 \cdot 2^{{i - 3}} \cdot \left( {db/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right)} \right)} \\ { = b + \left( {1/d} \right) \cdot \left( {db/3 + 5db/12} \right) = b + b/3 + 5b/12 = 84b/48.} \\ \end{array} $$

Case 8:

\( \gamma_{{i + 1}}^B \left( { = 8 \cdot 2^{{i - 3}} - 1} \right) \le t<\alpha_{{i + 3}}^A \left( { = 8 \cdot 2^{{i - 3}} } \right) \). In this case, we show R(t+1) is smaller than R(t) by the following equation.

$$ \begin{array}{*{20}c} {R\left( {t + 1} \right) - R(t) = \left( { - size\left( {i,B} \right) + \left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right) + size\left( {i + 3,A} \right) + size\left( {i + 3,B} \right)} \right)} \right)/d} \\ { = - b/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + b/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + b/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right) + b/\left( {16 \cdot 2 \cdot 2^{{i - 3}} } \right) + b/\left( {16 \cdot 3 \cdot 2^{{i - 3}} } \right) = - b/\left( {48 \cdot 2 \cdot 2^{{i - 3}} } \right)<0.} \\ \end{array} $$

Case 9:

\( t = \alpha_{{i + 3}}^A \). In this case, \( D\left( {t,i,A} \right) = 0 \), \( D\left( {t,i,B} \right) \ne 0 \), \( D\left( {t,i + 1,x} \right) = db/2 \), \( D\left( {t,i + 2,x} \right) \ne 0 \) and \( D\left( {t,i + 3,x} \right) \ne 0 \) for x∈{A,B}. Therefore,

$$ \begin{array}{*{20}c} {R(t) = D\left( {t,i,B} \right)/d + b/2 + b/2 + \left( {\sum\nolimits_{\begin{subarray}{l} x \in \left\{ {A,B} \right\} \\ l = i + 2,i + 3 \end{subarray} } {D\left( {t,l,x} \right)} } \right)/d} \\ { = b + \frac{1}{d} \cdot \left( {\left( {\delta_i^B - \alpha_{{i + 3}}^A + 1} \right)\left( {size\left( {i,B} \right)} \right) + \left( {\alpha_{{i + 3}}^A - \alpha_{{i + 2}}^A + 1} \right)\left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right) + size\left( {i + 3,A} \right) + size\left( {i + 3,B} \right)} \right)} \\ { = b + \frac{1}{d} \cdot \left( {\left( {2 \cdot 2^{{i - 3}} - 1} \right)\left( {db/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + \left( {4 \cdot 2^{{i - 3}} + 1} \right)\left( {db/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + db/\left( {16 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {16 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right)} \\ { = b + \frac{1}{d} \cdot \left( {db/3 - db/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + 5db/12 + 5db/\left( {48 \cdot 2^{{i - 3}} } \right) + 5db/\left( {6 \cdot 16 \cdot 2^{{i - 3}} } \right)} \right)} \\ { = b + b/3 - b/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + 5b/12 + 5b/\left( {48 \cdot 2^{{i - 3}} } \right) + 5b/\left( {6 \cdot 16 \cdot 2^{{i - 3}} } \right) = 84b/48 - b/\left( {96 \cdot 2^{{i - 3}} } \right).} \\ \end{array} $$

Case 10:

\( \alpha_{{i + 3}}^A \le t<\delta_i^B \). In this case, R(t+1) is smaller than R(t) since the equation

$$ R\left( {t + 1} \right) - R(t) = \left( { - size\left( {i,B} \right) + \left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right) + size\left( {i + 3,A} \right) + size\left( {i + 3,B} \right)} \right)} \right)/d - b/\left( {48 \cdot 2 \cdot 2^{{i - 3}} } \right)<0 $$

is the same as Case 8: \( \gamma_{{i + 1}}^B \le t<\alpha_{{i + 3}}^A \).

Case 11:

\( t = \delta_i^B \). In this case, \( D\left( {t,i,A} \right) = 0 \), \( D\left( {t,i,B} \right) \ne 0 \), \( D\left( {t,i + 1,x} \right) = db/2 \), \( D\left( {t,i + 2,x} \right) \ne 0 \), and \( D\left( {t,i + 3,x} \right) \ne 0 \) for x∈{A,B}. Therefore,

$$ \begin{array}{*{20}c} {R(t) = D\left( {t,i,B} \right)/d + b/2 + b/2 + \left( {\sum\nolimits_{{\begin{array}{*{20}c} {x \in \left\{ {A,B} \right\}} \hfill \\ {l = i + 2,i + 3} \hfill \\ \end{array} }} {D\left( {t,l,x} \right)} } \right)/d} \\ { = b + \frac{1}{d} \cdot \left( {size\left( {i,B} \right) + \left( {\delta_i^B - \alpha_{{i + 2}}^A + 1} \right)\left( {size\left( {i + 2,A} \right) + size\left( {i + 2,B} \right)} \right) + \left( {\delta_i^B - \alpha_{{i + 3}}^A + 1} \right)\left( {size\left( {i + 3,A} \right) + size\left( {i + 3,B} \right)} \right)} \right)} \\ { = b + \frac{1}{d} \cdot \left( {db/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + \left( {6 \cdot 2^{{i - 3}} - 1} \right)\left( {db/\left( {8 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {8 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right) + \left( {2.2^{{i - 3}} - 1} \right)\left( {db/\left( {16 \cdot 2 \cdot 2^{{i - 3}} } \right) + db/\left( {16 \cdot 3 \cdot 2^{{i - 3}} } \right)} \right)} \right)} \\ { = b + \frac{1}{d} \cdot \left( {db/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + 5db/8 - 5db/\left( {48 \cdot 2^{{i - 3}} } \right) + 5db/48 - 5db/\left( {96 \cdot 2^{{i - 3}} } \right)} \right)} \\ { = b + b/\left( {2 \cdot 3 \cdot 2^{{i - 3}} } \right) + \left( {5b/8 - 5b/\left( {48.2^{{i - 3}} } \right)} \right) + \left( {5b/48 - 5b/\left( {96.2^{{i - 3}} } \right)} \right) = 83b/48 + b/\left( {96.2^{{i - 3}} } \right).} \\ \end{array} $$

Up to now, we have calculated the values of R(t) in these time slots \( \beta_i^A, \gamma_{{i + 1}}^A, \beta_i^B, \gamma_{{i + 1}}^B \alpha_{{i + 3}}^A \left( { = \alpha_{{i + 3}}^B } \right),\delta_i^B \) and the variations R(t+1)–R(t) for each time slot t, \( \beta_i^A \le t<\beta_{{i + 1}}^A \) as summarized in Table 5. Thus \( 83b/48 \le R(t) \le 86b/48 \) holds for any time slot t with \( \beta_i^A \le t<\beta_{{i + 1}}^A \). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YW., Uemura, J. An interleaving crescent broadcasting protocol for near video-on-demand services. Multimed Tools Appl 49, 299–321 (2010). https://doi.org/10.1007/s11042-009-0359-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0359-8

Keywords

Navigation