Abstract
Recent advances in semantic image analysis have brought forth generic methodologies to support concept learning at large scale. The attained performance however is highly variable, reflecting effects related to similarities and variations in the visual manifestations of semantically distinct concepts, much as to the limitations issuing from considering semantics solely in the form of perceptual representations. Aiming to enhance performance and improve robustness, we investigate a fuzzy DLs-based reasoning framework, which enables the integration of scene and object classifications into a semantically consistent interpretation by capturing and utilising the underlying semantic associations. Evaluation with two sets of input classifiers, configured so as to vary with respect to the wealth of concepts’ interrelations, outlines the potential of the proposed approach in the presence of semantically rich associations, while delineating the issues and challenges involved.






Similar content being viewed by others
Notes
Intuitively a fuzzy assertion of the form a:C ≥ n means that the membership degree of the individual a to the concept C is at least equal to n.
References
Assfalg J, Bertini M, Colombo C, Bimbo AD (2002) Semantic annotation of sports videos. IEEE Multimed 9(2):52–60
Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2003) e.: the description logic handbook: theory, implementation, and applications. In: Description logic handbook. Cambridge University Press, Cambridge
Bagdanov A, Bertini M, DelBimbo A, Serra G, Torniai C (2007) Semantic annotation and retrieval of video events using multimedia ontologies. In: Proc. IEEE international conference on semantic computing (ICSC), Irvine, CA, USA
Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel-Schneider P, Stein L (2004) OWL web ontology language reference, W3C Recommendation 10 February. http://www.w3.org/TR/owl-ref/
Bell D, Qi G, Liu W (2007) Approaches to inconsistency handling in description-logic based ontologies. In: Proc. OTM workshops, Vilamoura, Portugal, pp 1303–1311
Bobillo F, Straccia U (2008) Fuzzydl: an expressive fuzzy description logic reasoner. In: Proc. international conference on fuzzy systems (FUZZ). IEEE Computer Society, Hong Kong, pp 923–930
Brickley D, Guha RV (2004) RDF Vocabulary description language 1.0: RDF schema, W3C Recommendation 10 February. http://www.w3.org/TR/rdf-schema/
Crevier D, Lepage R (1997) Knowledge-based image understanding systems: a survey. Comput Vis Image Underst 67:161–185
Dubois D, Prade H (2001) Possibility theory, probability theory and multiple-valued logics: a clarification. Ann Math Artif Intell 32(1-4):35–66
Elfers C, Herzog O, Miene A, Wagner T (2008) Qualitative abstraction and inherent uncertainty in scene recognition. In: Cohn AG, Hogg DC, Möller R, Neumann B (eds) Logic and B probabilty for scene interpretation, Dagstuhl Seminar Proceedings, Wadern
Espinosa S, Kaya A, Melzer S, Möller R, Wessel M (2007) Multimedia interpretation as abduction. In: Proc. international workshop on description logics (DL), Brixen-Bressanone, Italy
Haase P, Qi G (2007) An analysis of approaches to resolving inconsistencies in dl-based ontologies. In: Proc. international workshop on ontology dynamics (IWOD), Innsbruck, Austria, pp 97–109
Haase P, van Harmelen F, Huang Z, Stuckenschmidt H, Sure Y (2005) A framework for handling inconsistency in changing ontologies. In: Proc. of international semantic web conference (ISWC), Galway, Ireland, pp 353–367
Hanjalic A, Lienhart R, Ma W, Smith J (2008) The holy grail of multimedia information retrieval: so close or yet so far away. IEEE Proceedings (Special Issue on Multimedia Information Retrieval) 96(4):541–547
Hauptmann A, Yan R, Lin W (2007) How many high-level concepts will fill the semantic gap in news video retrieval? In: Proc. 6th ACM international conference on image and video retrieval (CIVR), Amsterdam, The Netherlands, pp 627–634
Hunter J, Drennan SL (2004) Realizing the hydrogen economy through semantic web technologies. IEEE Intelligent Systems Journal—Special Issue on eScience 19:40–47
Kalyanpur A, Parsia B, Sirin E, Grau BC (2006) Repairing unsatisfiable concepts in owl ontologies. In: Proc. of European semantic web conference (ESWC), Budva, Montenegro, pp 170–184
Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Englewood Cliffs
Lam J, Sleeman D, Pan J, Vasconcelos W (2008) A fine-grained approach to resolving unsatisfiable ontologies. J Data Semantics 10:62–95
LeBorgne H, Guérin-Dugué A, O’Connor N (2007) Learning midlevel image features for natural scene and texture classification. IEEE Trans Circuits Syst Video Technol 17(3):286–297
Little S, Hunter J (2004) Rules-by-example—a novel approach to semantic indexing and querying of images. In: International semantic web conference (ISWC), Hiroshima, Japan, pp 534–548
Moller R, Neumann B, Wessel M (1999) Towards computer vision with description logics: some recent progress. In: Proceedings integration of speech and image understanding, Corfu, Greece, pp 101–115
Moosmann F, Triggs B, Jurie F (2006) Randomized clustering forests for building fast and discriminative visual vocabularies. In: Neural information processing systems (NIPS)
Mylonas P, Simou N, Tzouvaras V, Avrithis Y (2007) Towards semantic multimedia indexing by classification and reasoning on textual metadata. Knowledge acquisition from multimedia content workshop, Genova, Italy
Naphade M, Huang T (2001) A probabilistic framework for semantic video indexing, filtering, and retrieval. IEEE Trans Multimedia 3(1):141–151
Naphade M, Huang T (2002) Extracting semantics from audio-visual content: the final frontier in multimedia retrieval. IEEE Trans Neural Netw 13(4):793–810
Naphade M, Kennedy L, Kender J, Chang SF, Smith J, Over P, Hauptmann A (2005) A light scale concept ontology for multimedia understanding for trecvid 2005. In: RC23612 W0505-104, computer science, IBM Research Report
Natsev A, Jiang W, Merler M, Smith J, Tesic J, Xie L Yan R (2008) IBM Research TRECVID-2008 video retrieval system. In: Proc. TREC Video Retrieval Workshop, Gaithersburg
Neumann B (2008) Bayesian compositional hierarchies—a probabilistic structure for scene interpretation. In: Dagstuhl seminar proceedings
Neumann B, Moller R (2004) On scene interpretation with description logics (FBI-B-257/04)
Neumann B, Möller R (2007) On scene interpretation with description logics. Image Vis Comput (Special Issue on Cognitive Vision) 26:82–101
Niemann H, Sagerer G, Schröder S, Kummert F (1990) Ernest: a semantic network system for pattern understanding. IEEE Trans Pattern Anal Mach Intell 12(9):883–905
Papadopoulos G, Mylonas P, Mezaris V, Avrithis Y, Kompatsiaris I (2006) Knowledge-assisted image analysis based on context and spatial optimization. Int J Semantic Web Inf Syst 2(3):17–36
Petridis K, Bloehdorn S, Saathoff C, Simou N, Dasiopoulou S, Tzouvaras V, Handschuh S, Avrithis Y, Kompatsiaris I, Staab S (2006) Knowledge representation and semantic annotation of multimedia content. IEE Proc Vis Image Signal Process (Special issue on Knowledge-Based Digital Media Processing) 153:255–262
Rao A, Jain R (1988) Knowledge representation and control in computer vision systems. IEEE Expert 3:64–79
Reiter R, Mackworth A (1990) A logical framework for depiction and image interpretation. Artif Intell 41:125–155
Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136
Schober JP, Hermes T, Herzog O (2004) Content-based image retrieval by ontology-based object recognition. In: Proc. KI-2004 workshop on applications of description logics (ADL), Ulm, Germany
Simou N, Athanasiadis T, Tzouvaras V, Kollias S (2007) Multimedia reasoning with f-shin. In: 2nd international workshop on semantic media adaptation and personalization, London, UK
Smeaton A, Over P, Kraaij W (2006) Evaluation campaigns and trecvid. In: MIR ’06: proceedings of the 8th ACM international workshop on multimedia information retrieval. ACM, New York, pp 321–330
Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380
Snoek C, Worring M, van Gemert J, Geusebroek J, Smeulders A (2006) The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proc. 14th ACM international conference on multimedia, Santa Barbara, CA, USA, pp 421–430
Snoek C, Huurnink B, Hollink L, de Rijke M, Schreiber G, Worring M (2007) Adding semantics to detectors for video retrieval. IEEE Trans Multimedia 9(5):975–986
Snoek C, van de Sande K, deRooij O, Huurnink B, van Gemert J, Uijlings J, He J, Li X, Everts I, Nedovic V, van Liempt M, van Balen R, Yan F, Tahir M, Mikolajczyk K, Kittler J, de Rijke M, Geusebroek J, Gevers T, Worring M, Smeulders A, Koelma D (2008) The MediaMill TRECVID 2008 semantic video search engine. University of Amsterdam, Amsterdam
Stoilos G, Stamou G, Pan J (2006) Handling imprecise knowledge with fuzzy description logic. In: Proc. international workshop on description logics (DL), Lake District, UK
Stoilos G, Stamou G, Pan J, Tzouvaras V, Horrocks I (2007) Reasoning with very expressive fuzzy description logics. J Artif Intell Res (JAIR) 30:273–320
Stoilos G, Stamou G, Tzouvaras V, Pan J, Horrocks I (2005) The fuzzy description logic f-SHIN. In: International workshop on uncertainty reasoning for the semantic web (URSW), Galway, Ireland
Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res (JAIR) 14:137–166
Straccia U (2004) Transforming fuzzy description logics into classical description logics. In: Proc. European conference on logics in artificial intelligence (JELIA), Lisbon, Portugal, pp 385–399
Straccia U (2006) A fuzzy description logic for the semantic web. In: Sanchez E (ed) Fuzzy logic and the semantic web, capturing intelligence. Elsevier, Amsterdam, pp 73–90
Town C, Sinclair D (2003) A self-referential perceptual inference framework for video interpretation. In: International confernce on computer vision systems (ICVS), Graz, Austria, pp 54–67
Umberto S, Giulio V (2007) Dlmedia: an ontology mediated multimedia information retrieval system. In: Proc. international workshop on description logics (DL), Brixen-Bressanone, Italy
Zadeh L (1965) Fuzzy sets. Inf Control 8(32):338–353
Acknowledgements
This work was partially supported by the European Commission under contracts FP6-001765 aceMedia, FP6-507482 KnowledgeWeb and FP7-215453 WeKnowIt.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dasiopoulou, S., Kompatsiaris, I. & Strintzis, M.G. Investigating fuzzy DLs-based reasoning in semantic image analysis. Multimed Tools Appl 49, 167–194 (2010). https://doi.org/10.1007/s11042-009-0393-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-009-0393-6