Skip to main content

Video Surveillance Online Repository (ViSOR): an integrated framework

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The availability of new techniques and tools for Video Surveillance and the capability of storing huge amounts of visual data acquired by hundreds of cameras every day call for a convergence between pattern recognition, computer vision and multimedia paradigms. A clear need for this convergence is shown by new research projects which attempt to exploit both ontology-based retrieval and video analysis techniques also in the field of surveillance. This paper presents the ViSOR (Video Surveillance Online Repository) framework, designed with the aim of establishing an open platform for collecting, annotating, retrieving, and sharing surveillance videos, as well as evaluating the performance of automatic surveillance systems. Annotations are based on a reference ontology which has been defined integrating hundreds of concepts, some of them coming from the LSCOM and MediaMill ontologies. A new annotation classification schema is also provided, which is aimed at identifying the spatial, temporal and domain detail level used. The ViSOR web interface allows video browsing, querying by annotated concepts or by keywords, compressed video previewing, media downloading and uploading. Finally, ViSOR includes a performance evaluation desk which can be used to compare different annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aggarwal K, Cucchiara R, Prati A (2006) In: VSSN ’06: proceedings of the 4th ACM international workshop on video surveillance and sensor networks. ACM, New York

    Chapter  Google Scholar 

  2. BEHAVE Website. http://homepages.inf.ed.ac.uk/rbf/BEHAVE/

  3. Bertini M, Del Bimbo A, Torniai C, Grana C, Vezzani R, Cucchiara R (2007) Sports video annotation using enhanced hsv histograms in multimedia ontologies. In: International workshop on visual and multimedia digital libraries. Modena, Italy, pp 160–167

    Google Scholar 

  4. Branch HOSD (2006) i-lids—imagery library for intelligent detection systems. Website. http://scienceandresearch.homeoffice.gov.uk/hosdb/

  5. Calderara S, Cucchiara R, Prati A (2008) Action signature: a novel holistic representation for action recognition. In: 5th IEEE international conference on advanced video and signal based surveillance (AVSS2008)

  6. CANDELA Website. http://www.extra.research.philips.com/euprojects/candela/

  7. CAVIAR Website. http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

  8. CMU Graphics Lab Motion Capture Database Website. http://mocap.cs.cmu.edu/

  9. Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25(10):1337–1342

    Article  Google Scholar 

  10. Doermann D, Mihalcik D (2000) Tools and techniques for video performance evaluation. In: Proc. of int’l conference on pattern recognition, vol 04, p 4167

  11. Francois AR, Nevatia R, Hobbs J, Bolles RC (2005) Verl: an ontology framework for representing and annotating video events. IEEE MultiMed 12(4):76–86

    Article  Google Scholar 

  12. HumanEva - Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion Website. http://vision.cs.brown.edu/humaneva/

  13. Image Sequence Server of the Institut für Algorithmen und Kognitive Systeme Website. http://i21www.ira.uka.de/image_sequences/

  14. Joly P, Benois-Pineau J, Kijak E, Quénot G (2007) The argos campaign: evaluation of video analysis tools. In: Fifth international workshop on content-based multimedia indexing (CBMI’07)

  15. Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J (2009) Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans Pattern Anal Mach Intell 31(2):319–336

    Article  Google Scholar 

  16. Kennedy L (2006) Revision of lscom event/activity annotations, dto challenge workshop on large scale concept ontology for multimedia. Columbia University ADVENT, Tech. Rep.

  17. Machy C, Desurmont X, Delaigle J-F, Bastide A (2007) Introduction of CCTV at level crossings with automatic detection of potentially dangerous situations. In: 2nd Selcat workshop

  18. Naphade M, Kennedy L, Kender JR, Chang S-F, Smith JR, Over P, Hauptmann A (2005) A light scale concept ontology for multimedia understanding for trecvid 2005. IBM Research, Tech. Rep.

  19. Nevatia R, Hobbs J, Bolles B (2004) An ontology for video event representation. In: CVPRW ’04: proceedings of the 2004 conference on computer vision and pattern recognition workshop (CVPRW’04), vol 7. IEEE Computer Society, Washington, DC, p 119

  20. Nghiem A-T, Bremond F, Thonnat M, Valentin V (2007) Etiseo, performance evaluation for video surveillance systems. In: Proceedings of AVSS 2007

  21. ObjectVideo Virtual Video Website. http://development.objectvideo.com/

  22. Pets: Performance evaluation of tracking and surveillance (2000–2007) Website. http://www.cvg.cs.rdg.ac.uk/slides/pets.html

  23. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  24. Rijsbergen CJV (1979) Information retrieval. Butterworth-Heinemann, Newton

    Google Scholar 

  25. Smeaton AF, Over P, Kraaij W (2006) Evaluation campaigns and trecvid. In: MIR ’06: proceedings of the 8th ACM international workshop on multimedia information retrieval. ACM, New York, pp 321–330

    Chapter  Google Scholar 

  26. Snoek C, Worring M, Van Gemert J, Geusebroek J, Smeulders A (2006) The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th ACM int’l conference on multimedia. ACM, New York, pp 421–430

    Chapter  Google Scholar 

  27. Surveillance Performance EValuation Initiative (SPEVI) Website. http://www.spevi.org

  28. TRECVID (2008) Surveillance video. Website. http://www-nlpir.nist.gov/projects/tv2008

  29. van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel-Schneider PF, Stein LA (2002) Owl web ontology language reference. http://www.w3.org/TR/owl-ref/

  30. Vezzani R, Cucchiara R (2008) Visor: video surveillance on-line repository for annotation retrieval. In: ICME. Hannover

  31. Vezzani R, Cucchiara R (2008) Annotation collection and online performance evaluation for video surveillance: the visor project, Santa Fe, New Mexico

  32. Vidi-video web site (2007) Website. http://www.vidivideo.info

  33. Viper toolkit at sourceforge (2005) Website. http://viper-toolkit.sourceforge.net/

  34. Visor web site (2007) Website. http://www.openvisor.org

  35. Weinland D, Ronfard R, Boyer E (2006) Free viewpoint action recognition using motion history volumes. Comput Vis Image Underst 104(2):249–257

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the project VIDI-Video (Interactive semantic video search with a large thesaurus of machine-learned audio-visual concepts), funded by E.C. FP6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Vezzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vezzani, R., Cucchiara, R. Video Surveillance Online Repository (ViSOR): an integrated framework. Multimed Tools Appl 50, 359–380 (2010). https://doi.org/10.1007/s11042-009-0402-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0402-9

Keywords