Skip to main content

Iterative filtering of SIFT keypoint matches for multi-view registration in Distributed Video Coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multi-view registration is an essential step in order to generate the side information for multi-view Distributed Video Coding. As stated in our previous work (Ciobanu and Côrte-Real, Multimed Tools Appl 48(3):411–436, 2010) it can be achieved by SIFT (scale-invariant feature transform) generated keypoint matches. The registration accuracy is vital for the adequate generation of side information and it directly depends on the reliable match of possibly all the available point to point correlations between two complete-overlapped views. We propose a solution to this problem based on iterative filtering of SIFT-generated keypoint matches, using the Hough transform and block matching. It aims the generic, real-life and constraint-free scenarios having an arbitrarily close angle between the two views. Practical results show an overall significant reduction of the outliers while maintaining a high rate of correct matches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benedek C, Havasi L, Sziranyi T, Szlavik Z (2005) Motion-based flexible camera registration. In: IEEE conference on advanced video and signal based surveillance, 2005. AVSS 2005, pp 439–444

  2. Bergevin R, Soucy M, Gagnon H, Laurendeau D (1996) Towards a general multi-view registration technique. IEEE Trans Pattern Anal Mach Intell 18(5):540–547

    Article  Google Scholar 

  3. Bicego M, Lagorio A, Grosso E, Tistarelli M (2006) On the use of SIFT features for face authentication. In: Conference on computer vision and pattern recognition workshop, 2006. CVPRW ’06, pp 35–35

  4. Brown M, Lowe DG (2003) Recognising panoramas. In: Proc. IEEE international conference on computer vision, Nice, France, 13–16 October 2003

  5. Brown M, Lowe DG (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74:59–73

    Article  Google Scholar 

  6. Ciobanu L, Côrte-Real L (2010) Successive refinement of side information for multi-view distributed video coding. Multimed Tools Appl 48(3):411–436

    Article  Google Scholar 

  7. Fiala M, Shu C (2006) 3D model creation using self-identifying markers and sift keypoints. In: IEEE international workshop on Haptic audio visual environments and their applications, 2006. HAVE 2006, pp 118–123

  8. Forssén P-E, Lowe DG (2007) Shape descriptors for maximally stable extremal regions. In: International conference on computer vision (ICCV), Rio de Janeiro, Brazil

  9. Gao K, Lin S, Zhang Y, Tang S, Ren H (2008) Attention model based SIFT keypoints filtration for image retrieval. In: Seventh IEEE/ACIS international conference on computer and information science, 2008. ICIS 08, pp 191–196

  10. Gordon I, Lowe DG (2006) What and where: 3D object recognition with accurate pose. In: Toward category-level object recognition, pp 67–82

  11. Izquierdo E (2003) Efficient and accurate image based camera registration. IEEE Trans Multimedia 5(3):293–302

    Article  Google Scholar 

  12. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 506–513

  13. Ledwich L, Williams S (2004) Reduced SIFT features for image retrieval and indoor localisation. In: Australian conference on robotics and automation

  14. Li Y, Wang Y, Huang W, Zhang Z (2008) Automatic image stitching using SIFT. In: International conference on audio, language and image processing, 2008. ICALIP 2008, pp 568–571

  15. López García F (2008) SIFT features for object recognition and tracking within the IVSEE system. In: ICPR08, pp 1–4

  16. Loui A, Das M (2008) Matching of complex scenes based on constrained clustering. AAAI Press

  17. Lowe D. Scale-Invariant Feature Transform (SIFT): matching with local invariant features. http://www.cs.ubc.ca/spider/lowe/research.html, http://www.cs.ubc.ca/~lowe/keypoints/

  18. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  19. Luo J, Ma Y, Takikawa E, Lao S, Kawade M, Lu B-L (2007) Person-specific SIFT features for face recognition. In: IEEE international conference on acoustics, speech and signal processing, 2007. ICASSP 2007, vol 2, pp II–593–II–596

  20. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  21. Osada K, Furuya T, Ohbuchi R (2008) SHREC’08 entry: Local volumetric features for 3D model retrieval. In: IEEE international conference on shape modeling and applications, 2008. SMI 2008, pp 245–246

  22. Park U, Pankanti S, Jain AK (2008) Fingerprint verification using SIFT features. In: Kumar BV, Prabhakar S, Ross AA (eds) SPIE, vol 6944, no 1, p 69440K. http://link.aip.org/link/?PSI/6944/69440K/1

  23. Shuai X, Zhang C, Hao P (2008) Fingerprint indexing based on composite set of reduced SIFT features. In: 19th international conference on pattern recognition, 2008. ICPR 2008, pp 1–4

  24. Szlávik Z, Szirányi T, Havasi L (2007) Video camera registration using accumulated co-motion maps. ISPRS J Photogramm Remote Sens 61(5):298–306. http://www.sciencedirect.com/science/article/B6VF4-4MBT1XC-1/2/4b51668788fbc721045553312424b95e

    Article  Google Scholar 

  25. Zhou H, Yuan Y, Shi C (2009) Object tracking using SIFT features and mean shift. Comput Vis Image Underst 113(3):345–352. http://www.sciencedirect.com/science/article/B6WCX-4TB18B4-2/2/1e03891714acb1657ed9156696fdbcfe (special issue on Video Analysis)

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the Fundação para a Ciência e a Tecnologia, Portugal, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Ciobanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciobanu, L., Côrte-Real, L. Iterative filtering of SIFT keypoint matches for multi-view registration in Distributed Video Coding. Multimed Tools Appl 55, 557–578 (2011). https://doi.org/10.1007/s11042-010-0565-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0565-4

Keywords