Skip to main content

Advertisement

Log in

Web video retagging

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Tags associated with web videos play a crucial role in organizing and accessing large-scale video collections. However, the raw tag list (RawL) is usually incomplete, imprecise and unranked, which reduces the usability of tags. Meanwhile, compared with studies on improving the quality of web image tags, tags associated with web videos are not studied to the same extent. In this paper, we propose a novel web video tag enhancement approach called video retagging, which aims at producing the more complete, precise, and ranked retagged tag list (RetL) for web videos. Given a web video, video retagging first collect its textually and visually related neighbor videos. All tags attached to the neighbors are treated as possible relevant ones and then RetL is generated by inferring the degree of relevance of the tags from both global and video-specific perspectives, using two different graph based models. Two kinds of experiments, i.e., application-oriented video search and categorization and user-based subjective studies are carried out on a large-scale web video dataset, which demonstrate that in most cases, RetL is better than RawL in terms of completeness, precision and ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.youtube.com/

  2. http://www.myspace.com/

  3. http://www.flickr.com/

  4. http://wordnet.princeton.edu/

  5. The dataset has been updated and now contains more than 200 k web videos.

  6. http://mcg.ict.ac.cn/mcg-webv.html

  7. http://www.wikipedia.org/

References

  1. Ahn LV, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of CHI 2004, pp 319–326

  2. Ames M, Naaman M (2007) Why we tag: motivations for annotation in mobile and online media. In: Proceedings of CHI 2007, pp 971–980

  3. Cao J, Zhang YD, Song YC, Chen ZN, Zhang X, Li JT (2009) MCG-WEBV: a benchmark dataset for web video analysis. Technical Report, Institute of Computing Technology

  4. Chang SF, He JF, Jiang YG, Khoury EE, Ngo CW, Yanagawa A, Zavesky E (2008) Columbia University/VIREO-CityU/IRIT TERCVID 2008. In: Proceedings of TRECVID Workshop

  5. Chen Z.N, Cao J, Song Y.C, Guo J.B, Zhang Y.D, Li J.T (2010) Context-oriented web video tag recommendation. In: Proceedings of ACM WWW 2010, pp 1079–1080

  6. Chua TS, Tang JH, Hong R, Li H, Luo Z, Zheng YT (2009) NUS-WIDE: a real-world web image database from national university of Singapore. In: Proceedings of ACM CIVR 2009

  7. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60

    Article  Google Scholar 

  8. Fogarty J, Tan DS, Kapoor A, Winder S (2008) CueFlik: interactive concept learning in image search. In: Proceedings of CHI 2008, pp 29–38

  9. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  Google Scholar 

  10. Guy M, Tonkin E (2006) Folksonomies tidying up tags. D-Lib Magazine 12(1). Retrieved from: http://www.dlib.org/dlib/january06/guy/01guy.html

  11. Halvey MJ, Jose M (2010) Towards annotation of video as part of search. In: Proceedings of advance in multimedia modeling 2010, pp 400–410

  12. Halvey MJ, Keane MT (2007) Analysis of online video search and sharing. In: Proceedings of HT 2007, pp.217–226

  13. Hatcher E, Gospodnetic O, McCandless M (2008) Lucene in action, second edition. Manning Publications, 2008

  14. Hsu W, Kennedy LS, Chang SF (2007) Video search reranking through random walk over document-level context graph. In: Proceedings of ACM international conference on multimedia, pp.971–980

  15. Jin Y, Khan L, Wang L, Awad M (2005) Image annotations by combining multiple evidence & Wordnet. In: Proceedings of ACM international conference on multimedia, pp 706–715

  16. Kennedy LS, Chang SF, Kozintsev IV (2006) To search or to label? Predicting the performance of search-based automatic image classifiers. In: Proceedings of ACM Conference on Multimedia Information Retrieval 2006, pp 249–258

  17. Li X, Snoek CCM (2009) Visual categorization with negative examples for free. In Proceedings of the ACM international conference on multimedia, pp 661–664

  18. Li X, Snoek CGM, Worring M (2009) Learning social tag relevance by neighbor voting. IEEE Trans Multimedia 11(7):1310–1322

    Article  Google Scholar 

  19. Lindstaedt S, Morzinger R, Sorschag R, Pammer V, Thallinger G (2009) Automatic image annotation using visual content and folksonomies. Multimed Tool Appl 42:97–113

    Article  Google Scholar 

  20. Liu L, Sun L, Rui Y, Shi Y, Yang S (2008) Web video topic discovery and tracking via bipartite graph reinforcement model. In: Proceedings of ACM WWW 2008, pp 1009–1018

  21. Liu D, Hua XS, Yang L. Wang M, Zhang HJ (2009) Tag ranking. In: Proceedings of ACM WWW 2009, pp 351–360

  22. Moxley E, Mei T, Manjunath BS (2010) Video annotation through search and graph reinforcement mining. IEEE Trans Multimedia 12(3):184–193

    Article  Google Scholar 

  23. Naphade MR, Smith JR, Tesic J, Chang SF, Hsu W, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. In Proceedings of ACM international conference on multimedia, pp 86–91

  24. Page L, Brin S, Motwani R, Winograd T (1998) The pagerank citation ranking: Bringing order to the web. Tech. Rep. 1999-66, Stanford University. Available on the Internet at http://dbpubs.stanford.edu:8090/pub/1999-66

  25. Qi GJ, Hua XS, Rui Y, Tang J H, Mei T, Zhang HJ (2007) Correlative multi-label video annotation. In: Proceedings of ACM international conference on multimedia, pp 17–26

  26. Rui X, Li M, Li Z, Ma WY, Yu N (2007) Bipartite graph reinforcement model for web image annotation. In: Proceedings of ACM international conference on multimedia, pp 585–594

  27. Setz AT, Snoek CCM (2009) Can social tagged image aid concept-based video search? In: Proceedings of the IEEE international conference on Multimedia & Expo, pp 1460–1463

  28. Sevil SG, Kucuktunc O, Duygulu P, Can F (2010) Automatic tag expansion using visual similarity for photo sharing websites. Multimed Tool Appl 49:81–99

    Article  Google Scholar 

  29. Siersdorfer S, Pedro JS, Sanderson M (2009) Automatic video tagging using content redundancy. In: Proceedings of ACM SIGIR’09, pp 395–402

  30. Sigurbjornsson B, Zwol RV (2008) Flickr tag recommendation based on Collective knowledge. In: Proceedings of ACM WWW 2008, pp 327–336

  31. Smeaton AF, Over P, Kraaij W (2009) High-level feature detection from video in TRECVid: a 5-year retrospective of achievements, multimedia content analysis, theory and applications, pp 151–174

  32. Tang S, Li JT, Li M, Xie C, Liu YZ, Tao K, Xu SX (2008) TRECVID 2008 high-level feature extraction by MCG-ICT-CAS. In: Proceedings of TRECVID Workshop

  33. Tang JH, Yan SC, Hong RC, Qi GJ, Chua TS (2009) Inferring semantic concepts from community-contributed images and noisy tags. In: Proceedings of ACM international conference on multimedia, pp 223–232

  34. Tsikrika T, Diou C, Vries APD, Delopoulos A (2009) Image annotation using clickthrough data. In: Proceedings of ACM CIVR 2009

  35. Ulges A, Schulze C, Keysers D, Breuel TM (2008) A system that learns to tag videos by watching YouTube. In: Proceedings of the 6th International Conference of Computer Vision Systems, pp 415–424

  36. Wang C, Jing F, Zhang L, Zhang HJ (2006) Image annotation refinement using random walk with restarts. In: Proceedings of ACM multimedia, pp 647–650, New York, USA

  37. Wang C, Jing F, Zhang L, Zhang HJ (2007) Content-based image annotation refinement. In: Proceedings of IEEE CVPR 2007, Minneapolis, Minnesota, pp 1–8

  38. Wu X, Hauptmann AG, Ngo CW (2007) Practical elimination of Near-duplicates from web video search. In: Proceedings of ACM international conference on multimedia, pp 218–227

  39. Wu L, Yang L, Yu N, Hua XS (2009) Learning to tag. In: Proceedings of ACM WWW 2009, pp 361–370

  40. Xu H, Wang J, Hua XS, Li S (2009) Tag refinement by regularized LDA. In: Proceedings of ACM international conference on multimedia, pp 573–576

  41. Yang L, Liu J, Yang X, Hua XS (2007) Multi-modality web video categorization. In: Proceedings of ACM Conference on Multimedia Information Retrieval 2007, pp 265–274

  42. Zhao WL, Wu X, Ngo CW (2010) On the annotation of web videos by efficient near-duplicate search. IEEE Trans Multimed 12(5):448–461

    Article  Google Scholar 

  43. Zhou T, Ren J, Medo M, Zhang YC (2007) Bipartite network projection and personal recommendation. Phys Rev E 76(4):1–7

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, 2007CB311100), National Nature Science Foundation of China (60902090), Beijing New Star Project on Science & Technology (2007B071), Co-building Program of Beijing Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhineng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Cao, J., Xia, T. et al. Web video retagging. Multimed Tools Appl 55, 53–82 (2011). https://doi.org/10.1007/s11042-010-0604-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0604-1

Keywords