Abstract
In this paper, we propose an advanced deinterlacing method which uses filters to estimate the edge direction using luminance information. Subsequently, we are able to obtain the luminance values at for missing pixels. The fuzzy logic concept for image processing is discussed with regard to fuzzy membership function representation and fuzzy inference procedures. The fuzzy if-then rules are employed to conduct the determining edge direction. The use of a different membership function for different direction enables the filter to independently characterize separate influences on pixel variation. Simulation results demonstrate that the proposed method has an enhanced performance, both visually and in terms of the peak signal-to-noise ratio, compared with those of conventional deinterlacing methods.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-010-0694-9/MediaObjects/11042_2010_694_Fig13_HTML.gif)
Similar content being viewed by others
References
Bellers EB, De Haan G (2000) De-interlacing: a key technology for scan rate conversion. Elsevier, Amsterdam
Bothorrel S, Bouchon B, Muller S (1997) A fuzzy logic-based approach for semiological analysis of microcalcification in mammographic images. Int J Intell Syst 12:819–843
Brox P, Baturone I, Sanchez-Solano S, Gutierrez-Rios J, Fernandez-Hernandez F (2007) A fuzzy edge-dependent motion adaptive algorithm for de-interlacing. Fuzzy Sets Syst 158(3):337–347
Chen P-Y, Lai Y-H (2007) A low-complexity interpolation method for deinterlacing. IEICE Trans Inf Syst E90-D(2):606–608
Chen T, Wu HR, Yu ZH (2000) Efficient deinterlacing algorithm using edge-based line average interpolation. Opt Eng 39(8):2101–2105
De Haan G (2007) Television display processing: past & future. In: Proc. IEEE ICCE2007, pp 1–2
De Haan G, Bellers EB (1997) De-interlacing of video data. IEEE Trans Consum Electron 43(3):819–825
Doyle T (1990) Interlaced to sequential conversion for EDTV applications. In: Proc. 2nd int. workshop signal processing of HDTV, pp 412–430
Jack K (2005) Video demystified—a handbook for the digital engineer, 4th edn. Elsevier, Jordan Hill, Oxford
Jeon G, Jeong J (2006) Designing Takagi–Sugeno fuzzy model-based motion adaptive deinterlacing system. IEEE Trans Consum Electron 52(3):1013–1020
Jeon G, Jeong J (2007) Fuzzy rule and Bayesian network based line interpolation for video deinterlacing. IEICE Trans Commun E90-B(6):1495–1507
Kim W, Jin S, Jeong J (2007) Novel intra deinterlacing algorithm using content adaptive interpolation. IEEE Trans Consum Electron 53(3):1036–1043
Lee D-H (2008) A new edge-based intra-field interpolation method for deinterlacing using locally adaptive-thresholded binary image. IEEE Trans Consum Electron 54(1):110–115
Li R, Zeng B, Liou L (2000) Reliable motion detection/compensation for interlaced sequences and its applications to deinterlacing. IEEE Trans Circuits Syst Video Technol 10(1):23–29
Li Y, Deng J-M, Wei M-Y (2002) Meaning and precision of adaptive fuzzy systems with Gaussian-type membership functions. Fuzzy Sets Syst 127(1):85–97
Michaud F, Le Dinh CT, Lachiver G (1997) Fuzzy detection of edge-direction for video line doubling. IEEE Trans Circuits Syst Video Technol 7(3):539–542
Mohammadi HM, Langlois P, Savaria Y (2007) A five-field motion compensated deinterlacing method based on vertical motion. IEEE Trans Consum Electron 53(3):1117–1124
Nachtegael M, Kerre EE (2001) Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst 124(1):73–85
Park MK, Kang MG, Nam K, Oh SG (2003) New edge dependent deinterlacing algorithm based on horizontal edge pattern. IEEE Trans Consum Electron 49(4):1508–1512
Reusch B, Fathi M, Hildebrand L (1988) Soft computing, multimedia and image processing-proceedings of the world automation congress. Albuquerque, NM, ch. Fuzzy color processing for quality improvement. TSI Press, pp 841–848
Ronsefeld A (1994) Survey: image analysis and computer vision; 1993. Comput Vis Image Underst 59(3):367–404
Sugiyama K, Nakamura H (1999) A method of de-interlacing with motion compensation interpolation. IEEE Trans Consum Electron 45(3):611–616
Thomas G (1998) A comparison of motion-compensated interlace-to-progressive conversion methods. Signal Process Image Commun 12:209–229
Van De Ville D, Philips W, Lemahieu I (2000) Fuzzy techniques in image processing, vol 52. Studies in fuzziness and soft computing, ch. Fuzzy-based motion detection and its application to de-interlacing. Springer, New York, pp 337–369
Yoo H, Jeong J (2002) Direction-oriented interpolation and its application to de-interlacing. IEEE Trans Consum Electron 48(4):954–962
Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249
Acknowledgements
This research was supported by Seoul Future Contents Convergence (SFCC) Cluster established by Seoul R&BD Program (10570).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jeon, G., Park, SJ., Fang, Y. et al. Application for deinterlacing method using edge direction classification and fuzzy inference system. Multimed Tools Appl 59, 149–168 (2012). https://doi.org/10.1007/s11042-010-0694-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-010-0694-9