Abstract
Developing low-dimensional discriminative features is crucial for content-based image retrieval (CBIR). In this paper, we present a square symmetrical local binary pattern (SSLBP) texture descriptor, which is a compact symmetrical-invariant variation of local binary pattern (LBP), then we propose a merging 2-class linear discriminant analysis (M2CLDA) method to capture low-dimensional optimal discriminative features in the projection space. M2CLDA calculates discriminant vectors with respect to each class in the one-vs.-all classification scenario and then merges all the discriminant vectors to form a projection matrix. The dimensionality of the M2CLDA space fits in with the number of classes involved. Our experiments show that the SSLBP feature is an effective variation of LBP, and the M2CLDA approach improves the performance of image retrieval and image classification observably as compared with the existed LDA approaches and takes less computation complexity than the kernel discriminant analysis (KDA) methods.







Similar content being viewed by others
References
Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041
Belhumeur N, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720
Boujemaa N, Nastar C (1999) Content-based image retrieval at the IMEDIA group of the INRIA 10th DELOS Workshop Audio-Visual Digital Libraries Santorini, Greece, June
Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Publications, New York
Ekenel HK, Stiefelhagen R (2007) IEEE 15th signal processing and communications applications. Anadolu University, Eskişehir, pp 1–4
Fisher RA (1938) The statistical utilization of multiple measurements. Ann Eugenics 8:376–386
Flickner M, Sawhney H, Niblack W et al (1995) Query by image and video content: the QBIC system. IEEE Comput 28(9):23–32
Fukunaga K (1990) Introduction to statistical pattern recognition. Academic, New York
Gao D, Vasconcelos N (2004) Discriminant saliency for visual recognition from cluttered scenes. In Proceedings of Neural Information Processing Systems (NIPS), Vancouver, Canada. pages 481–488, 2004
Guo ZH, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663
Heikkilä M, Pietikäinen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662
Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436
Jing F, Li M, Zhang H-J, Zhang B (2005) A unified framework for image retrieval using keyword and visual features. IEEE Trans Image Process 14(7):979–989
Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Comm Appl 2(1):1–19
Li Z, Shi Z, Liu X, Li Z, Shi Z (2010) Fusing semantic aspects for image annotation and retrieval. J Vis Comm Image Represent 21:798–805
Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(9):1075–1088
Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118
Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using LDA-based algorithms. IEEE Trans Neural Network 14(1):195–200
Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29:51–59
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Pietikäinen M, Nurmela T, Mäenpää T, Turtinen M (2004) View-based recognition of real-world textures. Pattern Recogn 37(2):313–323
Rui Y, Huang TS (2000) Optimizing learning in image retrieval. Proc. of IEEE Int. Conf. On Computer Vision and Pattern Recognition, Hilton Head, SC, 236–243
Shi ZP, Hu H, Li QY, Shi ZZ, Duan CL (2005) Texture spectrum descriptor based image retrieval. J Software 16(6):1039–1045, in Chinese
Smith JR, Chang SF (1997) Visually searching the web for content. IEEE Multimed 4(3):12–20
Tucker A (1995) Applied combinatorics, 3rd edn. Wiley, New York
Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86
Xi Liu, Zhiping Shi, Zhixin Li, Xishun Wang, Zhongzhi Shi (2010) Sorted label classifier chains for learning images with multi-label. ACM MM’10, October 25–29, Firenze, Italy
Yang J, Frangi AF, Yang J-Y, Zhang D, Jin Z (2005) Complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–243
You D, Hamsici OC, Martinez AM (2010) Kernel optimization in discriminant analysis. IEEE Trans Pattern Anal Mach Intell, 01 Sept. 2010. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.173
Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recogn 34(10):2067–2070
Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928
Zhiping Shi, Fei Ye, Qing He, Zhongzhi Shi (2008) Symmetrical invariant LBP Texture descriptor and application for image retrieval. IEEE Congress on Image and Signal Processing. Sanya, China. pages 825–829. May 27–30
Zhiping Shi, Qing He, Zhongzhi Shi. (2009) An index and retrieval framework integrating perceptive features and semantics for multimedia databases. Multimedia Tools and Applications, Springer Heidelberg, 42(2):207–231
Zhiping Shi, Xi Liu, Qing He, Zhongzhi Shi (2009) Image features optimizing for content-based image retrieval. 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Pages 260–264
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, Z., Liu, X., Li, Q. et al. Extracting discriminative features for CBIR. Multimed Tools Appl 61, 263–279 (2012). https://doi.org/10.1007/s11042-011-0836-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-011-0836-8