Abstract
This main purpose of this paper is to promote the efficiency of a control system using a scheduling policies control design. In this system, the management of a computer’s input and output information is handled appropriately by the program language. The scheduling policies control design is used in the robotic arm’s tracking system. The advantage of this control design is to activate each procedure running simultaneously when the transient overload of the information’s input and output in the control system occurs. Therefore, the time run in the scheduling policies control system will be shorter than that of a traditional control system in which each procedure is lined up for running. In this paper, case studies of the scheduling police control application used in image tracking vision control are introduced. The results reveal that the speed of the tracking system can be improved by using the scheduling police technique under an immediate procedure plan.





















References
Barnard ST, Thompson WB (1980) Disparity analysis of images. IEEE Trans Pattern Anal Mach Intell 2(4):330–340. doi:10.1109/TPAMI.1980.4767032
Bertozzi M, Broggi A (1998) GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans Image Process 7(1):62–81. doi:10.1109/83.650851
Han S-H, Seo WH, Yoon KS, Lee M-H (1999) Real-time control of an industrial robot using image-based visual servoing. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1762–1796. doi:10.1109/IROS.1999.811733
Hu B, Michel AN (1999) Some qualitative properties of multirate digital control systems. IEEE Trans Autom Control 44(4):765–770. doi:10.1109/CDC.1997.649518
John M, Ovidiu G, Paul F, Whelan (2003) Robust 3-D landmark tracking using trinocular vision. Vision System Laboratory. School of Electronic Engineering Dublin City University, pp. 221–229. doi:10.1117/12.463730
Kidono K, Miura J, Shirai Y (2002) Autonomous visual navigation of a mobile robot using a human-guided experience. Proc Elsevier Int Conf Robot Auton Syst 40(2):121–130. doi:10.1016/S0921-8890(02)00237-3
Kuo HC, Wu LJ (2002) An image tracking system for welded seams using fuzzy logic. J Mater Process Technol 120(1–3):169–185. doi:10.1016/S0924-0136(01)01155-4
Lobo J, Queiroz C, Dias J (2003) World feature detection and mapping using stereovision and inertial sensors. Proc Elsevier Int Conf Robot Auton Syst 44(1):69–81. doi:10.1016/S0921-8890(03)00011-3
Mohan R, Nevatia R (1989) Using perceptual organization to extract 3D structures. IEEE Trans Pattern Anal Mach Intell 11(11):1121–1139. doi:10.1109/34.42852
Murray D, Jennings C (1997) Stereo vision based mapping and navigation for mobile robots. Robot Autom IEEE Int Conf 2:1694–1699. doi:10.1109/ROBOT.1997.614387
Ohya I, Kosaka A, Kak A (1998) Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. Vision Res 14(6):969–978. doi:10.1109/70.736780
Olson CF, Huttenlocher DP (1997) Automatic target recognition by matching oriented edge pixels. IEEE Trans Image Process 6(1):103–113. doi:10.1109/83.552100
Palopoli L, Abeni L, Bolognini G, Allotta B, Conticelli F (2002) Novel scheduling policies in real-time multithread control system design. Pregamon Control Eng Pract 10:1091–1110. doi:10.1016/S0967-0661(02)00054-0
Seara JF, Schmidt G (2004) Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robot Auton Syst 48:231–248. doi:10.1016/j.robot.2004.07.003
Starck JL, Murtagh F, Candes EJ, David DL (2003) Gray and color image contrast enhancement by the curvelet transform. IEEE Trans Image Process 12(6):706–717. doi:10.1109/TIP.2003.813140
Winters N, Santos-Victor J (2002) Information sampling for vision-based robot navigation. Robot Auton Syst 41:145–159. doi:10.1016/S0921-8890(02)00278-6
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hsu, KS., Peng, L. & Yu, C. Design and application of the stereo vision manipulator with novel scheduling policies control. Multimed Tools Appl 67, 249–268 (2013). https://doi.org/10.1007/s11042-011-0867-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-011-0867-1