Skip to main content
Log in

Parallel structure-aware halftoning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Structure-aware halftoning technique is one of the state-of-the-art algorithms for generating structure-preserving bitonal images. However, the slow optimization process prohibits its real-time application. This is due to its high computational cost of similarity measurement and iterative refinement. Unfortunately, the structure-aware halftoning cannot be straightforwardly parallelized due to its data dependency nature. In this paper, we propose a parallel algorithm to boost the optimization of the structure-aware halftoning. Our main idea is to exploit the spatial independence during the evaluation of the objective function and temporal independence among the iterations. Specifically, we introduce a parallel Poisson-disk algorithm during the selection of pixel swaps, which guarantees the independency between parallel processes. Graphics processing unit (GPU) implementation of the technique leads to a significant speedup without sacrificing the quality. Our experiments demonstrate the effectiveness of the proposed parallel algorithm in generating structure-preserving bitonal images with much less time, especially for large images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bayer BE (1973) An optimum method for two-level rendition of continuous tone pictures. In: Proceeding of the IEEE international conference on communications, vol 26. IEEE, New York, pp. 2611–2615

    Google Scholar 

  2. Bowers J, Wang R, Wei LY, Maletz D (2010) Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Trans Graph (SIGGRAPH Asia 2010 issue) 29:166:1–166:10

    Google Scholar 

  3. Chang J, Alain B, Ostromoukhov V (2009) Structure-aware error diffusion. ACM Trans Graph (SIGGRAPH Asia 2009 issue) 28:162:1–162:8

    Google Scholar 

  4. Chen J, Paris S, Durand F (2007) Real-time edge-aware image processing with the bilateral grid. ACM Trans Graph 26(3):103:1–103:9

    Article  Google Scholar 

  5. Cook RL (1986) Stochastic sampling in computer graphics. ACM Trans Graph 5(1):51–72

    Article  Google Scholar 

  6. Ebeida MS, Davidson AA, Patney A, Knupp PM, Mitchell SA, Owens JD (2011) Efficient maximal poisson-disk sampling. ACM Trans Graph (SIGGRAPH 2011 issue) 30:49:1–49:12

    Google Scholar 

  7. Floyd RW, Steinberg L (1974) An adaptive algorithm for spatial grey scale. In: SID international symposium digest of technical papers. Society for Information Display, Washington, DC, pp 36–37

  8. Fung YH, Chan YH (2010) Green noise digital halftoning with multiscale error diffusion. IEEE Trans Image Process 19(7):1808–1823

    Article  MathSciNet  Google Scholar 

  9. Gamito MN, Maddock SC (2009) Accurate multidimensional Poisson-disk sampling. ACM Trans Graph 29:8:1–8:19

    Article  Google Scholar 

  10. Guo JM (2007) A new model-based digital halftoning and data hiding designed with lms optimization. IEEE Trans Multimedia 9(4):687–700

    Article  Google Scholar 

  11. Hwang BW, Kang TH, Lee TS (2004) Improved edge enhanced error diffusion based on first-order gradient shaping filter. In: IEA/AIE’2004: proceedings of the 17th international conference on innovations in applied artificial intelligence. Springer, New York, pp 473–482

    Chapter  Google Scholar 

  12. Sullivan JR, Ray LA, Miller R (1991) Design of minimum visual modulation halftone patterns. IEEE Trans Syst Sci Cybern 21(1):33–38

    Article  Google Scholar 

  13. Kim JS, Lee HJ (2008) A subfield coding algorithm for the reduction of gray level errors due to line load in a plasma display panel. IEEE Trans Circuits Syst Video Technol 18(6):827–839

    Article  Google Scholar 

  14. Kim SH, Allebach JP (2002) Impact of hvs models on model-based halftoning. IEEE Trans Image Process 11(3):258–269

    Article  Google Scholar 

  15. Kwak NJ, Ryu SP, Ahn JH (2006) Edge-enhanced error diffusion halftoning using human visual properties. In: ICHIT ’06: proceedings of the 2006 international conference on hybrid information technology. IEEE Computer Society, Washington, pp 499–504

    Chapter  Google Scholar 

  16. Li H, Mould D (2010) Contrast-aware halftoning. Comput Graph Forum 29(2):273–280

    Article  Google Scholar 

  17. Li P, Allebach JP (2000) Look-up-table based halftoning algorithm. IEEE Trans Image Process 9(9):1593–1603

    Article  Google Scholar 

  18. Li P, Allebach JP (2004) Tone-dependent error diffusion. IEEE Trans Image Process 13(2):201–215

    Article  Google Scholar 

  19. Mese M, Vaidyanathan PP (2002) Tree-structured method for lut inverse halftoning and for image halftoning. IEEE Trans Image Process 11(6):644–655

    Article  Google Scholar 

  20. Monga V, Damera-Venkata N, Evans BL (2007) Design of tone-dependent color-error diffusion halftoning systems. IEEE Trans Image Process 16(1):198–211

    Article  MathSciNet  Google Scholar 

  21. Ostromoukhov V (2001) A simple and efficient error-diffusion algorithm. In: SIGGRAPH, pp 567–572

  22. Pang WM, Qu Y, Wong TT, Cohen-Or D, Heng PA (2008) Structure-aware halftoning. ACM Trans Graph (SIGGRAPH 2008 issue) 27(3):89:1–89:8

    Google Scholar 

  23. Rodriguez JB, Arce GR, Lau DL (2008) Blue-noise multitone dithering. IEEE Trans Image Process 17(8):1368–1382

    Article  MathSciNet  Google Scholar 

  24. Schmaltz C, Gwosdek P, Bruhn A, Weickert J (2010) Electrostatic halftoning. Comput Graph Forum 29(8):2313–2327

    Article  Google Scholar 

  25. Su Y, Xu Z, Jiang X (2008) Gpgpu-based Gaussian filtering for surface metrological data processing. In: 12th international conference on information visualisation, pp 94–99

  26. Tzeng S, Wei LY (2008) Parallel white noise generation on a gpu via cryptographic hash. In: Proceedings of the 2008 symposium on interactive 3D graphics, pp 79–87

  27. Ulichney R (1987) Digital halftoning. The MIT Press, Cambridge, MA. 27 June 1987

    Google Scholar 

  28. Ulichney R (2000) A review of halftoning techniques. In: Proc. of SPIE, vol 3963, pp 378–391

  29. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  30. Wei LY (2008) Parallel Poisson disk sampling. ACM Trans Graph 27(3):20:1–20:10

    Google Scholar 

Download references

Acknowledgements

We would like to thank all reviewers for their valuable suggestions to improve the paper. This work was supported in part by grants from Hong Kong RGC General Research Fund (Project No. CUHK 417411) and CUHK SHIAE Project Funding (Project No. SHIAE-MMT-P2-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huisi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Wong, TT. & Heng, PA. Parallel structure-aware halftoning. Multimed Tools Appl 67, 529–547 (2013). https://doi.org/10.1007/s11042-012-1048-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1048-6

Keywords

Navigation