Skip to main content
Log in

Detecting and tracking dim small targets in infrared image sequences under complex backgrounds

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a unified framework for automatically detecting and tracking dim small targets in infrared (IR) image sequence under complex backgrounds. Firstly, the variance weighted information entropy (variance WIE) followed by a region growing technique is introduced to segment the candidate targets in a single-frame IR image after background suppression. Then the pipeline filter is used to verify the real targets. The position and the size of the detected target are then obtained to initialize the tracking algorithm. Secondly, we adopt an improved local binary pattern (LBP) scheme to represent the target texture feature and propose a joint gray-texture histogram method for a more distinctive and effective target representation. Finally, target tracking is accomplished by using the mean shift algorithm. Experimental results indicate that the proposed method can effectively detect the dim small targets under complex backgrounds and has better tracking performance compared with the gray histogram based tracking methods such as the mean shift and the particle filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bai X, Zhou F, Jin F (2010) Enhancement of dim small target through modified top-hat transformation under the condition of heavy clutter. Signal Process 90:1643–1654

    Article  MATH  Google Scholar 

  2. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  3. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  4. Deng H, Liu JG (2011) Infrared small target detection based on the self-information map. Infrared Phys Technol 54(2):100–107

    Article  Google Scholar 

  5. Fukunaga K, Hostetler HD (1975) The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40

    Article  MATH  MathSciNet  Google Scholar 

  6. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  7. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP Variance (LBPV) with global matching. Pattern Recognit 43(3):706–719

    Article  MATH  Google Scholar 

  8. Haritaoglu I, Flickner M (2012) Efficient tracking using a robust motion estimation technique. Multimed Tools Appl 58:1–16

    Article  Google Scholar 

  9. Huang K, Mao X (2010) Detectability of infrared small targets. Infrared Phys Technol 53(3):208–217

    Article  Google Scholar 

  10. Kerekes R (2009) Enhanced video-based target detection using multi-frame correlation filtering. IEEE Trans Aerosp Electron Syst 45(1):289–307

    Article  Google Scholar 

  11. Laura SL, Erik LM (2012) Distribution fields for tracking. In: Proc. of the IEEE Comput Vis Pattern Recogn, pp 1910–1917

  12. Li Y, Mao XJ, Feng D, Zhang YN (2011) Fast and accuracy extraction of infrared target based on Markov random field. Signal Process 91:1216–1223

    Article  Google Scholar 

  13. Liu Z, Chen C, Shen X (2005) Detection of small objects in image data based on the non linear principal component analysis neural network. Opt Eng 44(9):1–9

    Article  MATH  Google Scholar 

  14. Liu R, Liu E, Yang J, Zhang T, Wang F (2007) Infrared small target detection with kernel Fukunaga–Koontz transform. Meas Sci Technol 18:3025–3035

    Article  Google Scholar 

  15. Ning JF, Zhang Z, Wu CK (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recognit Artif Intell 23(7):1245–1263

    Article  Google Scholar 

  16. Nummiaro K, Koller-Meier E, Gool LV (2003) An adaptive color-based particle filter. Image Vis Comput 21(1):99–110

    Article  Google Scholar 

  17. Ojala T, Pietikäinen M, Mäenpä T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  18. Ojala T, Valkealahti K, Oja E, Pietikäinen M (2001) Texture discrimination with multi-dimensional distributions of signed gray level differences. Pattern Recognit 34(3):727–739

    Article  MATH  Google Scholar 

  19. OTCBVS benchmark dataset. [online] http://www.cse.ohio-state.edu/otcbvs-bench

  20. Peng GH, Chen H, Wu Q (2011) Infrared small target detection under complex background. Adv Mater Res 346:615–619

    Article  Google Scholar 

  21. Polat E, Ozden M (2006) A nonparametric adaptive tracking algorithm based on multiple feature distributions. IEEE Trans Multimed 8:1156–1163

    Article  Google Scholar 

  22. Shao XP, Fan H, Lu GX, Xu J (2012) An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys Technol, Available online 15 June 2012

  23. Soni T, Zeidler JR, Ku W (1993) Performance evaluation of 2D adaptive prediction filters for detection of small objects in image data. IEEE Trans Image Process 2(3):327–340

    Article  Google Scholar 

  24. Valtteri V, Pietikainen M (2007) Multi-object tracking using color, texture and motion. In: Proc. of the IEEE Comput Vis Pattern Recogn, pp 1–7

  25. VIVID database. [online] http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html

  26. Wang SP (2010) Adaptive feature selection for infrared object tracking. Wireless Communications Networking and Mobile Computing, pp 1–4

  27. Wang P, Tian JW, Gao CQ (2009) Infrared small target detection using directional high pass filters based on LS-SVM. Electron Lett 45(3):156–158

    Article  Google Scholar 

  28. Wang JQ, Yagi Y (2006) Integrating shape and color features for adaptive real-time target tracking. In: Proc. of the IEEE Robotics and Biomimetics, pp 1–6

  29. Yang L, Yang J, Yang K (2004) Adaptive detection for infrared small target under sea-sky complex background. Electron Lett 40(17):1083–1085

    Article  Google Scholar 

  30. Yang L, Zhou Y, Yang J, Chen L (2006) Variance WIE based infrared images processing. Electron Lett 42(15):857–859

    Article  Google Scholar 

  31. Yilmaz A, Shafique K, Shah M (2003) Target tracking in airborne forward looking infrared imagery. Image Vis Comput 21:623–635

    Article  Google Scholar 

  32. Zhang F, Li C, Shi L (2005) Detecting and tracking dim moving point target in IR image sequence. Infrared Phys Technol 46:323–328

    Article  Google Scholar 

  33. Zhang B, Zhang T, Zhang K, Cheng Z, Cao Z (2007) Adaptive rectification filter for detecting small IR targets. IEEE A&E Syst Mag 22(8):20–26

    Article  Google Scholar 

  34. Zhang T, Zuo Z, Yang W, Sun X (2007) Moving dim point target detection with three-dimensional wide-to-exact search directional filtering. Pattern Recognit Lett 28(2):246–253

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to the anonymous reviewers for their constructive comments and suggestions that help improve the quality of this manuscript. We also appreciate the providers of the test sequences. This works was supported by the National Natural Science Foundation of China (No. 60873086), and the Aeronautics Science Foundation of China (No. 2011ZD53049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liang, S., Bai, B. et al. Detecting and tracking dim small targets in infrared image sequences under complex backgrounds. Multimed Tools Appl 71, 1179–1199 (2014). https://doi.org/10.1007/s11042-012-1258-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1258-y

Keywords

Navigation