Skip to main content
Log in

Physically-based modeling, simulation and rendering of fire for computer animation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We give an up-to-date survey on techniques and methods for fire simulation in computer graphics. Physically-based method prevails over traditional non-physical methods for realistic visual effect. In this paper, we explore visual simulation of fire-related phenomena in terms of physically modeling, numerical simulation and visual rendering. Firstly, we introduce a physical and chemical coupled mathematical model to explain fire behavior and motion. Several assumptions and constrains are put forward to simplify their implementations in computer graphics. We then give an overview of present methods to solve the most complicated processes in numerical simulation: velocity advection and pressure projection. In addition, comparisons of these methods are also presented respectively. Since fire is a participating medium as well as a visual radiator, we discuss techniques and problems of these issues as well. We conclude by addressing several open challenges and possible future research directions in fire simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beaudin P, Parquet S, Poulin P (2001) Realistic and controllable fire simulation. In: Proceedings of graphics interface 2001, pp 159–166

  2. Bridault F, Leblond M, Rousselle F (2006) Enhanced illumination of reconstructed dynamic environments using a real-time flame model. In: Afrigraph of 2006, pp 31–40

  3. Bridson R (2008) Fluid simulation for computer graphics. A K Peters, Ltd., pp 21–28

  4. Bukowski R, Sequin C (1997) Interactive simulation of fire in virtual building environments. In: Proceedings of SIGGRAPH 1997, computer graphics proceedings. ACM, pp 35–44

  5. Chadwick J, James D (2011) Animating fire with sound. ACM Trans Graph 30(4):1–8

    Article  Google Scholar 

  6. Chomiak J (1990) Combustion, a study in theory, fact and application. Abacus Press/Gordon and Breach Science Publishers, New York

    Google Scholar 

  7. Chiba N, Ohkawa S, Muraoka K, Miura M (1994) Two dimensional visual simulation of flames, smoke and the spread of fire. J Vis Comput Animat 5:37–54

    Article  Google Scholar 

  8. Cohen JM, Molemaker MJ (2009) A fast double precision CFD code using CUDA. In: Proceedings of ParCFD’09

  9. Cohen J, Tariq S, Green S (2010) Interactive fluid particle simulation using translating Eulerian grids. In: Proceedings of the 2010 SIGGRAPH symposium on interactive 3D graphics and games

  10. Durs LJ (2004) The linear instability of astrophysical flames in magnetic fields. Astrophys J 606:1039–1056

    Article  Google Scholar 

  11. Enright D, Marschner S, Fedkiwn R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph 21:736–744

    Article  Google Scholar 

  12. Fedkiw R, Stam J, Jensen HW (2001) Visual simulation of smoke. In: Proceedings of SIGGRAPH’01, pp 15–22

  13. Feldman BE, O’brien JF, Arikan O (2003) Animating suspended particle explosions. ACM Trans Graph 22(3):708–715

    Article  MATH  Google Scholar 

  14. Foster N, Fedkiw R (2001) Practical animation of liquids. In: Proceedings of ACM SIGGRAPH. ACM, New York, pp 23–30

    Google Scholar 

  15. Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process 58:471–483

    Article  Google Scholar 

  16. Fire: Wikipedia, http:/en.wikipedia.org/wiki/Firetriangle/

  17. Harris MJ (2004) Fast fluid dynamics simulation on the GPU. In: GPU gems. Addison-Wesley, pp 637–665

  18. Hasinoff SW (2002) Three-dimensional reconstruction of fire from images. Master thesis, MIT

  19. Hasinoff SW, Kutulakos KN (2003) Photoconsistent 3d fire by flame-sheet decomposition. In: ICCV 2003, pp 1184–1191

  20. Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83

    Article  Google Scholar 

  21. Holman JP (2010) Heat transfer, 10th edn. McGraw-Hill Companies

  22. Hong J-M, Shinar T, Fedkiw R (2007) Wrinkled flames and cellular patterns. ACM Trans Graph 26:1188–1198

    Article  Google Scholar 

  23. Horvath C, Geiger W (2009) Directable high resolution simulation of fire on the GPU. ACM Trans Graph 28(3):1–8

    Article  Google Scholar 

  24. Hottel HC (1984) Stimulation of fire research in the United States after 1940. Combust Sci Technol 39:1–10

    Article  Google Scholar 

  25. Ihrke I, Magnor M (2004) Image-based tomographic reconstruction of flames. In: SCA, pp 365–373

  26. Inakage M (1990) A simple model of flame. In: Proceedings of CG international, pp 71–81

  27. Kim B, Liu Y, Llamas I, Rossignac J (2005) Flowxer: using BFECC for fluid simulation. In: Proceedings of Eurographics workshop on natural phenomena

  28. Kim D, Young Song O et al (2008) A semi-Lagrangian cip fluid solver without dimensional splitting. Comput Graph Forum 27:467–475

    Article  Google Scholar 

  29. Kwatra N, Gretarsson JT, Fedkiw R (2010) Practical animation of compressible flow for shock waves and related phenomena. In: Eurographics/ACM SIGGRAPH symposium on computer animation

  30. Lamorlette A, Foster N (2002) Structural modeling of flames for a production environment, p 729

  31. Lee H, Kim L, Meyer M, Desbrun M (2000) Meshes on fire. In: EuroGraphics 2000 workshop on animation

  32. Lentine M, Zheng W, Fedkiw R (2010) A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans Graph 29(4):1–9

    Article  Google Scholar 

  33. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    Article  MATH  Google Scholar 

  34. Liu SG, An T et al (2012) Physically-based simulation of solid objects’ burning. In: Transactions on edutainment VII, pp 110–120

  35. Losasso F, Gibou F, Fedkiw R (2004) simulation water and smoke with an octree data structure. In: Proceedings of SIGGRAPH’04, vol 23, pp 457–462

  36. Losasso F, Irving G, Guendelman E, Fedkiw R (2006) Melting and burning solids into liquids and gases. IEEE Trans Vis Comput Graph 12:343–352

    Article  Google Scholar 

  37. Losasso F, Shinar T, Selle A, Fedkiw R (2006) Multiple interacting liquids. ACM Trans Graph 25:812–819

    Article  Google Scholar 

  38. Markstein GH (1964) Nonsteady flame propagation. Pergamon, Oxford

    Google Scholar 

  39. Martins C, Buchanan J, Amanatides J (2002) Animating real-time explosions. J Vis Comput Animat 13:133–145

    Article  MATH  Google Scholar 

  40. McGrattan KB et al (2002) Fire dynamics simulator (version 3) technical reference guide. In: Tech. Rep. NISTIR 6783, National Institute of Standards and Technology

  41. Melek Z, Keyser J (2002) Interactive simulation of fire. In: Pacific graphics 2002, pp 431–432

  42. Melek Z, Keyser J (2005) Multi-representation interaction for physically based modeling. In: ACM symposium on solid and physical modeling, pp 187–196

  43. Mitler HE (1991) Mathematical modeling of enclosure fires, numerical approaches to combustion modeling. AIAA J 23:183–223

    Google Scholar 

  44. Molemaker J, Cohen JM, Patel S, Noh J (2008) Low viscosity flow simulations for animation. In: ACM SIGGRAPH/Eurographics symposium on computer animation 2008

  45. Naka KI, Rushton WAH (1966) S-potentials from luminosity units in the retina of fish. J Physiol 185:587–599

    Google Scholar 

  46. Neff M, Fiume EL (1999) A visual model for blast waves and fracture. In: Graphics interface, vol 99, pp 193–202

  47. Nguyen D, Fedkiw R, Jensen H (2002) Physically based modeling and animation of fire. Comput Graph 21(3):73–744

    Google Scholar 

  48. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  49. O’Brien JF, Bargteil AW, Hodgins JK (2001) Graphical modeling and animation of ductile fracture. In: Proceedings of ACM SIGGRAPH 2001, pp 291–294

  50. O’Brien JF, Hodgins JK (1999) Graphical modeling and animation of brittle fracture. In: Proceedings of ACM SIGGRAPH, vol 99, pp 137–146

  51. Park DG, Woo SH, Jo MR, Lee DH (2008) An interactive fire animation on a mobile environment. In: Proceedings of the 2008 international conference on multimedia and ubiquitous engineering

  52. Pegoraro V, Parker SG (2006) Physically-based realistic re rendering. In: Eurographics workshop on natural phenomena, pp 237–244

  53. Perlin KH (1985) An image synthesizer. In: Computer graphics proceedings, annual conference series, pp 287–296

  54. Perlin KH, Hokert EM (1989) Hypertexture. Comput Graph Proc Annu Conf Ser 23:253–262

    Article  Google Scholar 

  55. Perry HC, Picard WR (1994) Synthesizing flames and their spreading. In: Proceedings of 5th Eurographics workshop on animation and simulation, pp 105–117

  56. Poinsot T, Veynante D (2012) Theoretical and numerical combustion, 3rd edn. European Centre for Research and Advanced Training in Scientific Computation

  57. Rasmussen N, Nguyen DQ (2003) Smoke simulation for large-scale phenomena. In: Proceedings of SIGGRAPH’03, vol 22(3), pp 703–707

  58. Reeves T (1983) Particle system-A technique for modeling a class of fuzzy objects. ACM Trans Graph 2(2):91–108

    Article  Google Scholar 

  59. Rehm RG, Baum HR (1978) The equations of motion for thermally driven, Buoyant flows. J Res Natl Bur Stand 83:297–308

    Article  MATH  Google Scholar 

  60. Roberts I (2001) Realistic modeling of flame. Bachelor thesis, Univ. of Bristol

  61. Rushmeier H, Hamins A, Choi MY (1995) Volume rendering of pool fire data. IEEE Comput Graph Appl 15:62–67

    Article  Google Scholar 

  62. Selle A, Fedkiw R, Kim B, Liu Y, Rossignac J (2008) An unconditionally stable MacCormack method. J Sci Comput 35(2):350–371

    Article  MATH  MathSciNet  Google Scholar 

  63. Shah M, Cohen J, Patel S, Lee P, Pighin F (2004) Extended Galilean invariance for adaptive fluid simulation. In: 2004 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 13–221

  64. Siegel R, Howell J (1981) Thermal radiation heat transfer. Hemisphere Publishing Corp

  65. Stam J (1999) Stable fluids. In: SIGGRAPH 99 conference proceedings, ACM SIGGRAPH, computer graphics proceedings, pp 121–128

  66. Stam J (2000) Interacting with smoke and fire in real-time. Commun ACM 43:76–83

    Article  Google Scholar 

  67. Stam J (2001) A simple fluid solver based on the FFT. J Graphics Tools 6:43–52

    Article  MATH  Google Scholar 

  68. Stam J (2003) Real-time fluid dynamics for games. In: Proceedings of the game developer conference

  69. Stam J, Fiume E (1993) Turbulent wind fields for gaseous phenomena. In: Proc. of SIGGRAPH 1993, pp 369–376

  70. Stam J, Fimue E (1995) Depicting fire and other gaseous phenomena using diffusion process. In: Proc. of SIGGRAPH 1995, pp 129–136

  71. Steinhoff J, Underhill D (1994) Modification of the Euler equations for “vorticity confinement”: application to the computation of interacting vortex rings. Phys Fluids 6(8):2738–2744

    Article  MATH  Google Scholar 

  72. Stokes (2012) iPhone vs iPad. http://www.infi.nl/blog/view/id/71/Navier

  73. Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML (1999) An adaptive level set approach for incompressible two-phase flows. J Comput Phys 148:81–124

    Article  MATH  MathSciNet  Google Scholar 

  74. Takahashi T, Fujii H, Kunimatsu A, Hiwada K, Saito T, Tanaka K, Ueki H (2003) Realistic animation of fluid with splash and foam. In: EUROGRAPHICS, vol 22

  75. Takahashi J, Takahashi H, Chiba N (1997) Image synthesis of flickering scenes including simulated flames. IEICE Trans Inf Syst 11:1102–1108

    Google Scholar 

  76. US Army (1971) Characteristics, chemistry, and physics of fire, 5-315. US Army Corps of Engineers Internet Publishing Group

  77. Yao J, Stewart DS (1996) On the dynamics of multidimensional detonation. J Fluid Mech 309:225–275

    Article  MATH  MathSciNet  Google Scholar 

  78. Yngve GD, O’Brien JF, Hodgins JK (2000) Animating explosions. In: Proceedings of ACM SIGGRAPH 2000, pp 29–36

  79. Zhao Y, Wei X, Fan Z, Kaufman A, Qin H (2003) Voxels on fire. In: Proceedings of IEEE visualization, pp 271–278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanpeng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Gong, G. & Han, L. Physically-based modeling, simulation and rendering of fire for computer animation. Multimed Tools Appl 71, 1283–1309 (2014). https://doi.org/10.1007/s11042-012-1273-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1273-z

Keywords

Navigation