Skip to main content
Log in

On stability of signature-based similarity measures for content-based image retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Retrieving similar images from large image databases is a challenging task for today’s content-based retrieval systems. Aiming at high retrieval performance, these systems frequently capture the user’s notion of similarity through expressive image models and adaptive similarity measures. On the query side, image models can significantly differ in quality compared to those stored on the database side. Thus, similarity measures have to be robust against these individual quality changes in order to maintain high retrieval performance. In this paper, we investigate the robustness of the family of signature-based similarity measures in the context of content-based image retrieval. To this end, we introduce the generic concept of average precision stability, which measures the stability of a similarity measure with respect to changes in quality between the query and database side. In addition to the mathematical definition of average precision stability, we include a performance evaluation of the major signature-based similarity measures focusing on their stability with respect to querying image databases by examples of varying quality. Our performance evaluation on recent benchmark image databases reveals that the highest retrieval performance does not necessarily coincide with the highest stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beecks C, Uysal MS, Seidl T (2010) A comparative study of similarity measures for content-based multimedia retrieval. In: Proc. IEEE international conference on multimedia & expo, pp 1552–1557

  2. Beecks C, Uysal MS, Seidl T (2010) Signature quadratic form distance. In: Proc. ACM international conference on image and video retrieval, pp 438–445

  3. Beecks C, Seidl T (2012) On stability of adaptive similarity measures for content-based image retrieval. In: MMM, pp 346–357

  4. Chávez E, Navarro G, Baeza-Yates R, Marroquín JL (2001) Searching in metric spaces. ACM Comput Surv 33(3):273–321. doi:10.1145/502807.502808

    Article  Google Scholar 

  5. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60. doi:10.1145/1348246.1348248

    Article  Google Scholar 

  6. Douze M, Jegou H, Sandhawalia H, Amsaleg L, Schmid C (2009) Evaluation of gist descriptors for web-scale image search. In: CIVR

  7. Hu R, Rüger S, Song D, Liu H, Huang Z (2008) Dissimilarity measures for content-based image retrieval. In: Proc. IEEE international conference on multimedia & expo, pp 1365 –1368. doi:10.1109/ICME.2008.4607697

  8. Huiskes MJ, Lew MS (2008) The MIR flickr retrieval evaluation. In: Proc. of the 1st ACM international conference on multimedia information retrieval, pp 39–43

  9. Huiskes MJ, Thomee B, Lew MS (2010) New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative. In: MIR ’10: Proceedings of the 2010 ACM international conference on multimedia information retrieval. ACM, New York, pp 527–536

    Google Scholar 

  10. Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst 20:422–446. doi:10.1145/582415.582418

    Article  Google Scholar 

  11. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: ECCV (1), pp 304–317

  12. Kent A, Berry MM, Luehrs FU, Perry JW (1955) Machine literature searching VIII. Operational criteria for designing information retrieval systems. Am Doc 6(2):93–101. doi:10.1002/asi.5090060209

    Article  Google Scholar 

  13. Leow WK, Li R (2004) The analysis and applications of adaptive-binning color histograms. Comput Vis Image Underst 94(1–3):67–91. doi:10.1016/j.cviu.2003.10.010

    Article  Google Scholar 

  14. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110. doi:10.1023/B:VISI.0000029664.99615.94. URL:http://portal.acm.org/citation.cfm?id=993451.996342

    Article  Google Scholar 

  15. Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  16. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630. doi:10.1109/TPAMI.2005.188

    Article  Google Scholar 

  17. Nistér D, Stewénius H (2006) Scalable recognition with a vocabulary tree. In: CVPR (2), pp 2161–2168

  18. Park BG, Lee KM, Lee SU (2008) Color-based image retrieval using perceptually modified Hausdorff distance. J Image Video Process 2008:1–10. doi:10.1155/2008/263071

    Google Scholar 

  19. Rubner Y, Tomasi C, Guibas LJ (2000) The Earth Mover’s Distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121. doi:10.1023/A:1026543900054

    Article  MATH  Google Scholar 

  20. Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical evaluation of dissimilarity measures for color and texture. Comput Vis Image Underst 84(1):25–43

    Article  MATH  Google Scholar 

  21. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: IEEE international conference on computer vision, pp 1470–1477

  22. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380. doi:10.1109/34.895972

    Article  Google Scholar 

  23. Tamura H (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

  24. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280. doi:10.1561/0600000017

    Article  Google Scholar 

  25. van Rijsbergen CJ (1979) Information retrieval. Butterworth, Boston

    Google Scholar 

  26. Zezula P, Amato G, Dohnal V, Batko M (2005) Similarity search: the metric space approach. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Excellence Initiative of the German federal and state governments and by DFG grant SE 1039/7-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beecks.

Additional information

This paper is an extended version of a previous paper by Beecks and Seidl [3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beecks, C., Kirchhoff, S. & Seidl, T. On stability of signature-based similarity measures for content-based image retrieval. Multimed Tools Appl 71, 349–362 (2014). https://doi.org/10.1007/s11042-012-1334-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1334-3

Keywords

Navigation