Skip to main content

Evidence-based SVM fusion for 3D model retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Many existing 3D model retrieval use KNN (k-nearest neighbor) method for similarity search, but it is inefficient in high-dimension space search. In this paper, the classification tools are integrated for supporting more effective 3D model search in the high-dimensional feature space. Our proposed algorithm used multiple SVM classifiers to predict 3D models for a given query and D-S Evidence theory is used to fuse all the prediction results. Experimental results show that our proposed 3D model retrieval algorithm can improve the accuracy significantly compared with the traditional kNN method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agathos A, Pratikakis I, Papadakis P, et al (2009) Retrieval of 3D articulated objects using a graph-based representation. Eurographics Workshop on 3D Object Retrival. Munich, Germany, pp 29–36

  2. Basir O, Karray F, Zhu H (2005) Connectionist-based Dempster–Shafer evidential reasoning for data fusion. IEEE Transactions on Neural Networks, pp 1513–1530

  3. Bronstein AM, Bronstein MM, Guibas LJ, Ovsjanikov M (2011) Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans Graph 30:1–20. doi:10.1145/1899404.1899405

    Article  Google Scholar 

  4. Chen D-Y, Tian X-P, Shen Y-T, Ouhyoung M (2003) On visual similarity based 3D model retrieval. Comput Graph Forum 22:223–232. doi:10.1111/1467-8659.00669

    Article  Google Scholar 

  5. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  6. Dutagaci H, Godil A, Daras P, Axenopoulos A, Litos G, Manolopoulou S, Goto K, Yanagimachi T, Kurita Y, Kawamura S, Furuya T, Ohbuchi R, Gong B, Liu J, Tang X (April 10, 2011) SHREC’11 Track: Generic Shape Retrieval. 4th Eurographics Workshop on 3D Object Retrieval (3DOR 2011), Llandudno (UK)

  7. Elad M, Tal A, Ar S (2001) Content based retrieval of VRM L objects-an iterative and interactive approach. Eurographics Workshop on Multimedia

  8. Funkhouser TA, Min P, Kazhdan M et al (2003) A search engine for 3D models. ACM Trans Graph 22:83–105

    Article  Google Scholar 

  9. Gehler PV, Nowozin S (2009) On feature combination for multiclass object classification. International Conference on Computer Vision, pp 221–228

  10. Jiantao P, Yi L, Guyu X, et al (2004) 3D model retrieval based on 2D slice similarity measurements. International Symposium on 3D Data Processing, Visualization and Transmission. IEEE, pp 95–101

  11. Kazhdan M, Funkhouser TA, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. Eurographics Symposium on Gometry Processing. pp 156–164

  12. Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27–72

    MATH  Google Scholar 

  13. Lian ZH, Godil A, Sun XF (2010) Visual similarity based 3D shape retrieval using bag of features. International Conference of Shape Modeling

  14. Mémoli F, Sapiro G (2005) A theoretical and computational framework for isometry invariant recognition of point cloud data. Found Comput Math 5:313–347. doi:10.1007/s10208-004-0145-y

    Article  MATH  MathSciNet  Google Scholar 

  15. Novotni M, Klein R (2003) 3D zernike descriptors for content based shape retrieval. The ACM symposium on Solid modeling and applications. ACM Press, New York, p 216

    Google Scholar 

  16. Osada R, Funkhouser TA, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21:807–832. doi:10.1145/571647.571648

    Article  Google Scholar 

  17. Papadakis P, Pratikakis I, Theoharis T, Passalis G, Perantonis S (2008) 3D object retrieval using an efficient and compact hybrid shape descriptor. Eurographics Workshop on 3D Object Retrival

  18. Paquet E, Rioux M, Murching A et al (2000) Description of shape information for 2-D and 3-D objects. Signal Process Image Commun 16:103–122. doi:10.1016/S0923-5965(00)00020-5

    Article  Google Scholar 

  19. Pedro D, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29:103–137

    MATH  Google Scholar 

  20. Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers, MIT Press

  21. Qu DC, Meng XW, Hang J, He Y (2004) Research of artificial neural network intelligent recognition technology assisted by Dempster-Shafer Evidence Combination Theory. 7th Int Conf Signal Proc 1:46–49 (in Chinese)

    Google Scholar 

  22. Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630

    Article  Google Scholar 

  23. Rustamov RM (2009) Template based shape descriptor. Eurographics Workshop on 3D Object Retrival. Munich, Germany, pp 1–7

  24. Satish L, Gururaj BI (2003) Use of hidden Markov models for partial discharge pattern classification. IEEE Trans Dielectr Electr Insul 28(2):172–182

    Article  Google Scholar 

  25. Suzuki MT (2001) A search engine for polygonal models to support development of 3D e-learning applications. The 10th International World Wide Web Conference Poster Proceedings. pp 182–183

  26. Tangelder JWH, Veltkamp RC (2003) Polyhedral model retrieval using weighted point sets. Int J Image and Graph 3:209–229

    Article  Google Scholar 

  27. Tangelder JWH, Veltkamp RC (2007) A survey of content based 3D shape retrieval methods. Multimed Tools Appl 39:441–471. doi:10.1007/s11042-007-0181-0

    Article  Google Scholar 

  28. Vranic DV (2003) An improvement of rotation invariant 3D shape descriptor based on functions on concentric spheres. International Conference on Image Processing

  29. Zhang X (2000) Introduction to statistical learning theory and support vector machines. Acta Autom Sin 26:32–42

    Google Scholar 

  30. Zhang C, Chen T (2001) Efficient feature extraction for 2D/3D objects in mesh representation. International Conference on Image Processing. IEEE, pp 935–938

Download references

Acknowledgments

This work is partly supported by National Natural Science Foundation of China (Grant No.60873164), National High-Tech R&D Plan (Grant No. 2009AA062802), the Shandong Provincial Natural Science Foundation(Grant No.ZR2009GL014), the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China (Grant No.BS2010DX037), Ministry of Culture Science and Technology Innovation Project(Grant No. 46-2010),the Fundamental Research Funds for the Central Universities(Grant No. 09CX04044A, 10CX04043A,10CX04014B)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhong Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Wu, Z., Kuang, Z. et al. Evidence-based SVM fusion for 3D model retrieval. Multimed Tools Appl 72, 1731–1749 (2014). https://doi.org/10.1007/s11042-013-1475-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1475-z

Keywords