Skip to main content
Log in

A short-term learning approach based on similarity refinement in content-based image retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new relevance feedback approach based on similarity refinement. In the proposed approach weight correction of feature’s components is done by a proposed rule set using mean and standard deviation of feature vectors of relevant (positive) and irrelevant (negative) images. Also, the weight of each type of features is adjusted according to the relevant images’ rank in the retrieval based on only the same type of feature. To evaluate the performance of the proposed method, a set of comparative experiments on a general database containing 20,000 images of various semantic groups are performed. The results confirm the effectiveness of the proposed method comparing with two well-known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albanesi MG, Bandelli S, Ferretti M (2001) Quantitative assessment of qualitative color perception in image database retrieval. IEEE Intern Conf Image Anal Process: 410–415.

  2. Arthur SM, Brodley C, Shyu C (2000) Relevance feedback decision trees in content-based image retrieval. Proc. IEEE Works Cont-Bas Acc Image Video Lib: 68–72.

  3. Barrett S, Chang R, Qi X (2009) A Fuzzy combined learning approach to content-based image retrieval. Proc IEEE Intern Conf Multim Expo: 838–84. doi: 10.1109/ICME.2009.5202625

  4. Bertini M, Del Bimbo A, Torniai C, Grana C, Vezzani R, Cucchiara R, (2007) Sports video annotation using enhanced HSV Histograms in Multimedia Ontologies. 14th International Conference on Image Analysis and Processing: 160–170.

  5. Chen Y, Wang JZ, Krovetz R (2005) CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning. IEEE Trans Image Process 14:1187–1201

    Article  Google Scholar 

  6. Cheng PC, Chien BC, Ke HR, Yang WP (2008) A two-level relevance feedback mechanism for image retrieval. Expert Syst Appl 34:2193–2200

    Article  Google Scholar 

  7. Clough P, Grubinger M, Hanbury A, Muller H (2008) Overview of the image clef 2007 photographic retrieval task. In CLEF 2007 Workshop, LNCS 5152: 473–491

  8. Datta R, Joshi D, Li J, Wang J (2008) Image retrieval: Ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60

    Article  Google Scholar 

  9. Deselaers T, Paredes R, Vidal E, Ney H (2008) Learning weighted distances for relevance feedback in image retrieval. Int Conf Pattern Recogn: 1–4.

  10. He X, King O, Ma WY, Li M, Zhang HJ (2003) Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans Circ Syst Video Tech 13(1):39–48

    Article  Google Scholar 

  11. Huang TS, Zhou XS, Nakazato M, Cohen I (2002) Learning in content-based image retrieval. 2nd IEEE Intern Conf Dev Lear: pp. 155.

  12. ISO/IEC/JTC1/SC29/WG11 (2000) Core experiment results for edge histogram descriptor (CT4). MPEG document M6174

  13. KIM DH, CHUNG CW, (2003) Qcluster: Relevance feedback using adaptive clustering for content based image retrieval. ACM-SIGMOD International Conference on Management of Data: 599–610.

  14. Laaksonen J, Koskela M, Laakso S, Oja E (2004) Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval. Pattern Anal Appl 2–3:140–152

    Google Scholar 

  15. Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Comm Appl 2(1):1–19

    Article  Google Scholar 

  16. Liu Y, Zhang D, Lu G, Ma W (2006) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40:262–282

    Google Scholar 

  17. Manjunath BS, Ma WY (1996) Texture feature for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Article  Google Scholar 

  18. Manjunath BS et al (2002) Introduction to MPEG-7. Wiley, New York

    Google Scholar 

  19. Modaghegh H, Javidi M, Yazdi HS, Pourreza HR (2010) Learning of Relevance Feedback Using a Novel Kernel Based Neural Network. Aust J Basic Appl Sci 4(2):171–186

    Google Scholar 

  20. Muller H, Muller W, Squire DM, Maillent SM, Pun T (2001) Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recognit Lett 22:593–601

    Article  Google Scholar 

  21. Nezamabadi-pour H, Kabir E (2004) Image retrieval using histograms of uni-color and bi-color blocks and directional changes in intensity gradient. Pattern Recognit Lett 25(14):1547–1557

    Article  Google Scholar 

  22. Nezamabadi-pour H, Kabir E (2004) Combining Low level features for semantic image classification. J Comput Sci Eng 2(1):37–46 (in Farsi)

    Google Scholar 

  23. Nezamabadi-pour H, Kabir E (2005) Evaluation of dissimilarity measures for image retrieval and classification. J Modarres 22:89–98 (in Farsi)

    Google Scholar 

  24. Nezamabadi-pour H, Kabir E (2009) Concept learning by fuzzy k-NN classification and relevance feedback for efficient image retrieval. Expert Syst Appl 36(3):5948–5954

    Article  Google Scholar 

  25. Papa JP, Falcao AX, Suzuki CTN (2009) Supervised pattern classification based on optimum-path forest. Int J Imaging Syst Technol 19(2):120–131

    Article  Google Scholar 

  26. Park DK, Jeon YS, Won CS (2000) Efficient use of local edge histogram descriptor. Proceedings of the 2000 ACM workshops on Multimedia: 51–54.

  27. Park SJ, Park DK, Won CS (2000) Core experiments on MPEG-7 edge histogram descriptor. MPEG document M5984

  28. Plantaniotis KN, Venetsanopoulos AN, (2000) Color image processing and applications, Springer.

  29. Qian F, Li M, Ma WY, Lin F, Zhang B (2003) Alternating feature spaces in relevance feedback. Multimed Tool Appl: 35–54.

  30. Rocchio JJ (1971) Relevance feedback in information retrieval. In: Salton G (Ed), The SMART retrieval system: Experiments in automatic document processing. Prentice Hall, pp. 313–323

  31. Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical evaluation of dissimilarity measures for color and texture. Comput Vis Image Understand 84:25–43

    Article  MATH  Google Scholar 

  32. Rui Y, Huang T, Mehrotra S (1997) Content-based image retrieval with relevance feedback in Mars. Proc IEEE Intern Conf Image Process 2:815–818

    Article  Google Scholar 

  33. Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Trans Circ Syst Video Tech 8(5):644–655

    Article  Google Scholar 

  34. Schettini R, Ciocca G, Gagliardi I (1999) Content-based color image retrieval with relevance feedback. Intern Conf Image Process 3:75–79

    Google Scholar 

  35. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22:1349–1380

    Article  Google Scholar 

  36. Smith JR, Li CS (1999) Image classification and querying using composite region templates. Comput Vis Understand 75:165–174

    Article  Google Scholar 

  37. Wan X, Kuo CCJ (1998) A new approach to image retrieval with hierarchical color clustering. IEEE Trans Circ Syst Video Tech 8(5):628–643

    Article  Google Scholar 

  38. Wei L, Yang Y, Nishikawa RM (2009) Micro classification assisted by content-based image retrieval for breast cancer diagnosis. Pattern Recogn 42:1126–1132

    Article  Google Scholar 

  39. Wood M, Campbell N, Thomas B (1998) Iterative refinement by relevance feedback in content based digital image retrieval. Proc ACM Multim: 13–20.

  40. Wu J, Lu M (2010) Asymmetric Bayesian Learning for Image Retrieval with Relevance Feedback. Lect Notes Comput Sci 5916:650–655

    Article  Google Scholar 

  41. Xu X, Lee D, Antani SK, Long LR, Archibald JK (2009) Using relevance feedback with short-term memory for content-based spine X-ray image retrieval. Neurocomputing 72:2259–2269

    Article  Google Scholar 

  42. Yoo HW, Jang DS, Juang SH, Park JH (2002) Visual information retrieval system via content-based approach. Pattern Recogn 35:749–769

    Article  MATH  Google Scholar 

  43. Zhou XS, Huang TS (2003) Relevance feedback in image retrieval: A comprehensive review. Multimed Syst 8(6):536–544

    Article  Google Scholar 

  44. Zhuang Y, Li Q, Lau RWH (2001) Web-based image retrieval: A hybrid approach. IEEE Proc Comput Graph Int: 62–69.

Download references

Acknowledgments

The authors would like to thank the MTAP Editorial Board and the anonymous reviewers for their very helpful suggestions. This work was supported in part by the Iran Telecommunication Research Center, ITRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nezamabadi-pour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamsi, A., Nezamabadi-pour, H. & Saryazdi, S. A short-term learning approach based on similarity refinement in content-based image retrieval. Multimed Tools Appl 72, 2025–2039 (2014). https://doi.org/10.1007/s11042-013-1503-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1503-z

Keyword

Navigation