Abstract
As a natural extension of surface parameterizaiton, volumetric parameterization is becoming more and more popular and exhibiting great advantages in several applications such as medical image analysis, hexahedral meshing etc. This paper presents an efficient volume parameterization algorithm based on harmonic 1-form. Our new algorithm computes three harmonic 1-forms, which can be treated as three vector fields, such that both the divergence and circulation of them are zero. By integrating the three harmonic 1-forms over the entire volumes, we can bijectively map the volume to a cuboid domain. We demonstrate the power of the technique by introducing a new application, to transfer the interior structure during the morphing of two given shapes.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1508-7/MediaObjects/11042_2013_1508_Fig10_HTML.gif)
Similar content being viewed by others
References
Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible shape interpolation. In: Proc ACM SIGGRAPH 2000, pp 157–164
Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M (2005) Variational tetrahedral meshing. ACM Trans Graph 24(3):617–625
Cohen-Or D, Solomovic A, Levin D (1998) Three-dimensional distance field metamorphosis. ACM Trans Graph 17(2):116–141
Dinh HQ, Yezzi A, Turk G (2005) Texture transfer during shape transformation. ACM Trans Graph 24(2):289–310
Floater MS, Hormann K (2005) Advances in multiresolution for geometric modelling, chapter surface parameterization: a tutorial and survey, pp 157–186. Springer
Greson J, Sheffer A, Zhang E (2011) All-hex mesh generation via volumetric polycube deformation. Comput Graph Forum 30(5):1407–1416
Grinspun E, Schröder P, Desbrun M (2005) Discrete differential geometry: an applied introduction. In: ACM SIGGRAPH’05 course notes
Gu X, Yau S-T (2003) Global conformal parameterization. In: Symposium on geometry processing, pp 127–137
Guo Y, Pan Y (2005) Harmonic maps based constrained texture mapping method. CAD & CG (Chinese) 17(7):1457–1462
Guo Y, Wang J, Sun H, Peng Q (2005) A novel constrained texture mapping method based on harmonic map. Comput Graph 29(6):972–979
Han S, Xia J, He Y (2010) Hexahedral shell mesh construction via volumetric polycube map. In: Proc of the 14th ACM symposium on solid and physical modeling, pp 127–136
Han S, Xia J, He Y (2011) Constructing hexahedral shell meshes via volumetric polycube maps. Comput Aided Des 43(10):1222–1233
He Y, Wang H, Fu C-W, Qin H (2009) A divide-and-conquer approach for automatic polycube map construction. Comput Graph 33(3):369–380
Lai Y-K, Jin M, Xie X, He Y, Palacios L, Zhang E, Hu S-M, Gu X (2010) Metric-driven rosy field design and remeshing. IEEE Trans Vis Comput Graph 16(1):95–108
Nieser M, Reitebuch U, Polthier K (2011) Cubecover—parameterization of 3d volumes. Comput Graph Forum 30(5):1397–1406
Radó, T (1926) Aufgabe 41. Jahresber Deutsch Math-Verein 35(49):49
Sarkar R, Zeng W, Gao J, Gu XD (2010) Harmonic quorum systems: Data management in 2d/3d wireless sensor networks with holes. In: Proceedings of the 9th ACM/IEEE International conference on information processing in sensor networks, pp 232–243
Sheffer A, Praun E, Rose K (2006) Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision 2(2):105–171
Si H (2009) Tetgen: a quality tetrahedral mesh generator and three-dimensional delaunay triangulator. Software available at http://tetgen.org
Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling. In: Proceedings of the fifth eurographics symposium on geometry processing, pp 109–116
Tarini M, Hormann K, Cignoni P, Montani C (2004) Polycube-maps. ACM Trans Graph 23(3):853–860
Tigges M, Wyvil B (1999) A field interpolated texture mapping algorithm for skeletal implicit surfaces. In: Computer graphics international 1999, pp 25–32
Tobias M, Cohen E, Kirby M. (2008) Volumetric parameterization and trivariate b-spline fitting using harmonic functions. In: Proc of the 2008 ACM symposium on solid and physical modeling, pp 269–280
Tong Y, Alliez P, Cohen-Steiner D, Desbrun M (2006) Designing quadrangulations with discrete harmonic forms. In: Symposium on geometry processing, pp 201–210
Turk G, O’Brien JF (1999) Shape transformation using variational implicit functions. In: Proc of ACM SIGGRAPH 1999, pp 335–342
Wang Y, Gu X, Thompson PM, Yau S-T (2004) 3d harmonic mapping and tetrahedral meshing of brain imaging data. In: Proc of medical imagng computing and computer assisted intervention, pp 26–30
Wang H, He Y, Li X, Gu X, Qin H (2007) Polycube splines. In: Proceedings of the 2007 ACM symposium on solid and physical modeling, pp 241–251
Wang H, He Y, Li X, Gu X, Qin H (2007) Polycube splines. Comput Aided Des 40(6):721–733
Xia J, He Y, Han S, Fu C-W, Luo F, Gu X (2010) Parameterization of star shaped volumes using green’s functions. In: Geometric modeling and processing 2010, pp 219–235
Xia J, He Y, Yin X, Han S, Gu X (2010) Direct-product volumetric parameterization of handlebodies via harmonic fields. In: Proc of shape modeling international conference, pp 3–12
Xin L, Guo X, He Y, Gu X, Qin H (2007) Harmonic volumetric mapping for solid modeling applications. In: Proceedings of the 2007 ACM Symposium on solid and physical modeling, pp 109–120
Xin L, Guo X, Wang H, He Y, Gu X, Qin H (2009) Meshless harmonic volumetric mapping using fundamental solution methods. IEEE Trans Autom Sci Eng 6(3):409–422
Xu D, Zhang H, Wang Q, Bao H (2005) Poisson shape interpolation. In: Proc of the 2005 ACM Symposium on solid and physical modeling, pp 267–274
Zhang C, Luo J, Xiang L, Li F, Lin J, He Y (2012) Harmonic quorum systems: Data management in 2d/3d wireless sensor networks with holes. In: Proceedings of 2012 9th Annual IEEE Communications society conference on sensor, mesh and ad hoc communications and networks (SECON), pp 1–9
Zeng W, Marino J, Kaufman AE, Gu X (2011) Volumetric colon wall unfolding using harmonic differentials. Comput Graph 35(3):726–732
Acknowledgements
This work was supported by AcRF 69/07, Singapore NRF Interactive Digital Media R&D Program under research grant NRF2008IDM-IDM004-006, the National Natural Science Foundation of China (No.61202142), Joint Funds of the Ministry of Education of China and China Mobile(MCM20122081), the Open Project Program of the State Key Lab of CAD&CG Zhejiang University(Grant No. A1205) and the Fundamental Research Funds for the Central Universities(No.2010121070). Jiazhi Xia is partially supported by the freedom explore Program of Central South University(NO.2012QNZT058) and Doctoral Fund of Ministry of Education of China(NO. 20120162120019).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, J., Xia, J., Gao, X. et al. Interior structure transfer via harmonic 1-forms. Multimed Tools Appl 74, 139–158 (2015). https://doi.org/10.1007/s11042-013-1508-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-013-1508-7