Skip to main content
Log in

Watermark design based on Steiner triple systems

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Constructing a set of watermarks of a specific structure may be one requirement for robust watermarking. This study aims to use the structure of Steiner triple systems to generate new watermarks. That is, the new watermark is a Steiner triple system built by using two smaller ones. The structure properties are examined to recognize watermarks at the receiver site. The main advantage is no information other than the mathematical structure has to be known for watermark recognition.Theoretical proof is given to verify the proposed watermark design method, and the experiment is conducted to confirm the theoretical behavior of the generated watermarks under random noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basu A, Cheng I, Wang T (2005) Balanced incomplete designs for 3d perceptual quality estimation. In: IEEE Int. Conf. Image Processing, 2005 (ICIP 2005). Genova, Italy, pp I–617–620

  2. Bryant D, Horsley D (2009) A proof of lindner’s conjecture on embeddings of partial Steiner triple systems. J Comb Des 17:63–89

    Article  MATH  MathSciNet  Google Scholar 

  3. Bryant D, Martin G (2012) Small embeddings for partial triple systems of odd index. J Comb Theory A 119:283–309

    Article  MATH  MathSciNet  Google Scholar 

  4. Camtepe S, Yener B (2007) Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE ACM T Network 15:346–358

    Article  Google Scholar 

  5. Colbourn CJ, Dinitz JH (1996) The CRC handbook of combinatorial designs. CRC, Boca Raton

  6. Cox IJ, Miller ML, Bloom JA (2008) Digital watermarking, 2nd edn. Morgan Kaufmann, Boston

    Google Scholar 

  7. Dinitz J, Stinson D (1992) Contemporary design theory: a collection of surveys. A Brief Introduction to Design Theory. Wiley, New York, pp 1–12

    Google Scholar 

  8. Djordjevic I (2008) Quantum ldpc codes from balanced incomplete block designs. IEEE Commun Lett 12:389–391

    Article  Google Scholar 

  9. Donovan DM, Grannell MJ, Griggs TS, Lefevre JG, McCourt T (2011) Self-embeddings of cyclic and projective steiner quasigroups. J Comb Des 19:16–27

    Article  MATH  MathSciNet  Google Scholar 

  10. Gersting JL (2006) Mathematical structures for computer science, 6th edn. W. H. Freeman, New York

    Google Scholar 

  11. Guerrini F, Okuda M, Adami N, Leonardi R (2011) High dynamic range image watermarking robust against tone-mapping operators. IEEE Trans Inf Forensics Secur 6:283–295

    Article  Google Scholar 

  12. Hu HT, Chen WH (2012) A dual cepstrum-based watermarking scheme with self-synchronization. Signal Process 92:1109–1116

    Article  Google Scholar 

  13. Kang IK, Lee CH, Lee HY, Kim JT, Lee HK (2005) Averaging attack resilient video fingerprinting. In: IEEE Int. Conf. Circuits and Systems, 2005 (ISCAS 2005). Kobe, Japan, pp 5529–5532

  14. Kovalevskaya DI, Soloveva FI (2013) On the steiner quadruple systems of small rank which are embeddable into extended perfect binary codes. J Appl Ind Math 7:68–77

    Article  MathSciNet  Google Scholar 

  15. Lan L, Tai YY, Lin S, Memari B, Honary B (2008) New constructions of quasi-cyclic ldpc codes based on special classes of bibd’s for the awgn and binary erasure channels. IEEE T Commun 56:39–48

    Article  Google Scholar 

  16. Liutkus A, Pinel J, Badeau R, Girin L, Richard G (2012) Informed source separation through spectrogram coding and data embedding. Signal Process 92:1937–1949

    Article  Google Scholar 

  17. Patel A, Kosko B (2011) Noise benefits in quantizer-array correlation detection and watermark decoding. IEEE T Signal Proces 59:488–505

    Article  MathSciNet  Google Scholar 

  18. Petitcolas FAP, Anderson RJ, Kuhn MG (1998) Attacks on copyright marking systems. In: Aucsmith D (ed) Information hiding, second international workshop, IH98. Springer-Verlag, Portland, Oregon, U.S.A., pp 219–239

    Google Scholar 

  19. Ryser HJ (1963) Combinatorial mathematics. Math Assoc Amer. Buffalo, NY

    MATH  Google Scholar 

  20. Sadasivam S, Moulin P, Coleman T (2011) A message-passing approach to combating desynchronization attacks. IEEE Trans Inf Forensics Secur 6:894–905

    Article  Google Scholar 

  21. Ostergard PRJ, Pottonen O, Phelps KT (2010) The perfect binary one-error-correcting codes of length 15: part iiXproperties. IEEE T Inform Theory 56:2571–2582

    Article  MathSciNet  Google Scholar 

  22. Trappe W, Wu M, Wang ZJ, Liu KJR (2003) Anti-collusion fingerprinting for multimedia. IEEE T Signal Proces 51:1069–1087

    Article  MathSciNet  Google Scholar 

  23. Tsai JS, Huang WB, Kuo YH, Horng MF (2012) Joint robustness and security enhancement for feature-based image watermarking using invariant feature regions. Signal Processing 92:1431–1445

    Article  Google Scholar 

  24. Wang J, Lian S (2012) On the hybrid multi-watermarking. Signal Process 92:893–904

    Article  Google Scholar 

  25. Wang K, Liu Q, Chen L (2012) Hierarchical reversible data hiding based on statistical information: Preventing embedding unbalance. Signal Process 92:2888–2900

    Article  Google Scholar 

  26. Yang J, Liu P, Tan G (2004) The digital fingerprint coding based on ldpc. In: Int. Conf. Signal Processing, 2004 (ICSP ’04). Istanbul, Turkey, pp 2600–2603

  27. Yang J, Xu X (2006) A robust anti-collusion coding in digital fingerprinting system. In: 8th International conference on signal processing. Guilin, China, pp 16–20

  28. Yang ZF (2006a) Anti-collusion fingerprinting for digital rights protection. In: 9th International symposium on wireless personal multimedia communications. San Diego, U.S.A.

  29. Yang ZF (2006b) Watermarking based on balanced incomplete block designs. In: 2006 International computer symposium. Tawan, R.O.C.

  30. Yang ZF, Lee PC, Chen WH, Leu JG (2009) Enlargement of balanced-incomplete-block-designs-based watermarks. In: Fifth international conference on intelligent information hiding and multimedia signal processing. Kyoto, Japan, pp 332–335

  31. Yang ZF, Wu MS (2008) Robustness of structure-based watermark by using balanced incomplete block designs. In: ISDA 2008. Kaohsiung City, Taiwan, pp 179–182

  32. Yeh BC, Lin CH, Wu J (2010) Noncoherent spectral/spatial ocdma system using two-dimensional hybrid codes. IEEE/ISA J Opt Commun Networking 2:653–661

    Article  Google Scholar 

  33. Zhang H, Shu H, Coatrieux G, Zhu J, Wu Q, Zhang Y, Zhu H, Luo L (2011a) Affine legendre moment invariants for image watermarking robust to geometric distortions. IEEE T Image Process 20:2189–2199

    Article  MathSciNet  Google Scholar 

  34. Zhang X, Qian Z, Ren Y, Feng G (2011b) Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction. IEEE Trans Inf Forensics Secur 6:1223–1232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Fang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ZF., Chiou, SS. & Lee, JT. Watermark design based on Steiner triple systems. Multimed Tools Appl 72, 2177–2194 (2014). https://doi.org/10.1007/s11042-013-1513-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1513-x

Keywords

Navigation