Skip to main content
Log in

An efficient estimation method for intensity factor of illumination changes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

For intensity correction under illumination changes in video sequence, one of the main problems lies in the lack of adaptive technique for the classification of stationary and non-stationary pixels in the images. In this paper, we propose an efficient estimation approach for intensity factor of illumination changes in order to perform intensity correction for dynamic sequence images. Firstly, the ratio image is obtained, where the probability density function computed on pixel values can be considered as a mixture Gaussian model. Then the process of the parameter estimations is performed based on Expectation–maximization (EM) algorithm. Under the assumption of Gaussian distribution for the values of stationary pixels, the intensity factor can be estimated by using pixels adjacent to the mean value of Gaussian distribution related to the stationary class. Finally, two experiments are carried out to verify the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aach T, Mester R (2001) Dumbgen L Bayesian illumination invariant change detection using a total least squares test statistic. In: In 18e Colloque GRETSI, Toulouse, France, 2001.9

  2. Black MJ, Fleet DJ, Yacoob Y (2000) Robustly estimating changes in image appearance. Comput Vis Image Und 78(1):8–31. doi:10.1006/cviu.1999.0825

    Article  Google Scholar 

  3. Celik T (2010) A Bayesian approach to unsupervised multiscale change detection in synthetic aperture radar images. Signal Process 90(5):1471–1485. doi:10.1016/j.sigpro.2009.10.018

    Article  MATH  Google Scholar 

  4. Dai XL, Khorram S (1998) The effects of image misregistration on the accuracy of remotely sensed change detection. Ieee T Geosci Remote 36(5):1566–1577

    Article  Google Scholar 

  5. Dempster BAP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  6. Kim YH, Martinez AM, Kak AC (2005) Robust motion estimation under varying illumination. Image Vision Comput 23(4):365–375. doi:10.1016/j.imavis.2004.05.010

    Article  Google Scholar 

  7. Lillestr RL (1972) Techniques for change detection. Ieee T Comput C 21(7):654–659. doi:10.1109/t-c.1972.223570

    Article  Google Scholar 

  8. Negahdaripour S (1998) Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis. IEEE Trans Pattern Anal Mach Intell 20(9):961–979. doi:10.1109/34.713362

    Article  Google Scholar 

  9. Odobez JM, Bouthemy P (1995) Robust multiresolution estimation of parametric motion models. J Vis Commun Image R 6(4):348–365. doi:10.1006/jvci.1995.1029

    Article  Google Scholar 

  10. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317. doi:10.1145/360825.360839

    Article  Google Scholar 

  11. Redner RA, Walker HF (1984) Mixture densities, maximum-likelihood and the EM algorithm. SIAM Rev 26(2):195–237. doi:10.1137/1026034

    Article  MATH  MathSciNet  Google Scholar 

  12. Sayed MS (2011) An efficient intensity correction algorithm for high definition video surveillance applications. Ieee T Circ Syst Vid 21(8)

  13. Shulman D, Herve J-Y (1989) Regularization of discontinuous flow fields. In: Workshop on Visual Motion, 1989., Proceedings., Irvine, CA, USA

  14. Skifstad K, Jain R (1989) Illumination independent change detection for real world image sequences. Comput Vis Graph Image Process 46(3):387–399. doi:10.1016/0734-189x(89)90039-x

    Article  Google Scholar 

  15. Toth D, Aach T, Metzler V (2000) Illumination–invariant change detection. Paper presented at the image analysis and interpretation, 2000. Proceedings. 4th IEEE Southwest Symposium Austin, TX, USA

  16. van Roosmalen PMB, Lagendijk RL, Biemond J (1999) Correction of intensity flicker in old film sequences. Ieee Transactions on Circuits and Systems for Video Technology 9(7):1013–1019. doi:10.1109/76.795054

    Article  Google Scholar 

  17. Withagen PJ, Groen FCA, Schutte K (2007) CCD color camera characterization for image measurements. IEEE Transactions on Instrumentation 56(1):199–203. doi:10.1109/tim.2006.887667

    Article  Google Scholar 

  18. Withagen PJ, Schutte K, Groen FCA (2010) Global intensity correction in dynamic scenes. Int J Comput Vision 86(1):33–47. doi:10.1007/s11263-009-0247-8

    Article  Google Scholar 

  19. Xie BL, Ramesh V, Boult T (2004) Sudden illumination change detection using order consistency. Image Vision Comput 22(2):117–125. doi:10.1016/j.imavis.2003.07.003

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Nature Science Foundation of China (NSFC) under 50805023, the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements under BA2010093 and the Hexa-type Elites Peak Program of Jiangsu Province under 2008144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Zhang, Z. An efficient estimation method for intensity factor of illumination changes. Multimed Tools Appl 72, 2619–2632 (2014). https://doi.org/10.1007/s11042-013-1521-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1521-x

Keywords

Navigation