Skip to main content
Log in

A compressed sensing approach for query by example video retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, compressed Sensing (CS) has theoretically been proposed for more efficient signal compression and recovery. In this paper, the CS based algorithms are investigated for Query by Example Video Retrieval (QEVR) and a novel similarity measure approach is proposed. Combining CS theory with the traditional discrete cosine transform (DCT), better compression efficiency for spatially sparse is achieved. The similarity measure from three levels (frame level, shot level and video level, respectively) is also discussed. For several different kinds of natural videos, the experimental results demonstrate the effectiveness of system by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Borgnat P, Flandrin P (2008) Time-frequency localization from sparsity constraints. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pp 3785–3788

  2. Browne P, Smeaton AF (2005) Video retrieval using dialogue, key frame similarity and video objects. In Proceedings of IEEE Int. Conf. image process, pp 1208–1211

  3. Cand`es E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans On Information Theory 52(2):489–509

    Article  MathSciNet  Google Scholar 

  4. Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  5. Chan WL, Moravec ML, Baraniuk RG, Mittleman DM (2008) Terahertz imaging with compressed sensing and phase retrieval. Opt Lett 33(9):974–976

    Article  Google Scholar 

  6. Chen X, Hero AO, Savarese S (2012) Multimodal video indexing and retrieval using directed information. IEEE Trans Multimedia 14(1):3–15

    Article  Google Scholar 

  7. Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  8. Feng G, Jiang J (2003) Image segmentation in compressed domain. J Electron Imaging 12(3):390–397

    Article  Google Scholar 

  9. Gan L, Do TT, Tran TD (2008) Fast compressive imaging using scrambled hadamard ensemble. In Proc. EUSIPCO

  10. Gao S, Tsang IWH, Chia LT, et al. (2010) Local features are not lonely–Laplacian sparse coding for image classification. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, pp 3555–3561

  11. Haupt J, Bajwa WU, Rabbat M, Nowak R (2008) Compressed sensing for networked data. Signal Process Mag IEEE 25(2):92–101

    Article  Google Scholar 

  12. Hou SJ, Zhou SB, Siddique MA (2012) Query by example video based on fuzzy c-means initialized by fixed clustering center. Opt Eng 51(4):047405, 1–11

    Article  Google Scholar 

  13. Karpenko A, Aarabi P (2011) Tiny videos: a large data set for nonparametric video retrieval and frame classification. IEEE Trans Pattern Anal Mach Intell 33(3):618–629

    Article  Google Scholar 

  14. Kekre, HB, Tanuja KS, Sudeep DT (2009) Image retrieval using color-texture features from DCT on VQ codevectors obtained by Kekre’s fast codebook generation. ICGST-International Journal on Graphics, Vision and Image Processing (GVIP) 9.5, pp 1–8

  15. Kekre HB, Thepade SD, Maloo A (2010) Image retrieval using fractional coefficients of transformed image using DCT and Walsh transform. Int J Eng Sci Technol 2(4):362–371

    Google Scholar 

  16. Kompatsiaris I, Stephane MM, Roelof VZ, Marcel S (2011) Introduction to the special issue on image and video retrieval: theory and applications. Multimed Tools Appl 55:1–6

    Article  Google Scholar 

  17. Kong J, Cuiying H (2010) Content-based Video Retrieval System Research. In Proceedings of IEEE International Conference on Computer Science and Information Technology, pp 701–704

  18. Lazebnik S, Schmid C, Ponce J (2003) A sparse texture representation using affine-invariant regions. Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference on. 2: 319–324

  19. Lienhart R, Effelsberg W, Jain R (1997) Visual GREP: a systematic method to compare and retrieval sequences. Porc SPIE 3312:271–282

    Article  Google Scholar 

  20. Liu Z, Zhao HV, Elezzabi AY (2010) Block-based adaptive compressed sensing for video. In Proceedings of 17th International Conference on Image Processing

  21. Lu J, Hua XS, Xu D (2011) Visual content identification and search. IEEE MultiMedia 18(3):8–10

    Article  Google Scholar 

  22. Mandal MK, Idris F, Panchanathan S (1999) A critical evaluation of image and video indexing techniques in the compressed domain. Image Vision Computing 17(7):513–529

    Article  Google Scholar 

  23. Miao J, Guo WH, Narayan S, Wilson DL (2013) A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 31(1):75–85

    Article  Google Scholar 

  24. Obdržálek S, Matas J (2003) Image retrieval using local compact DCT-based representation.Pattern Recognition. Springer, Berlin, pp 490–497

    Google Scholar 

  25. Pang L, Cao J, Bao L, Zhang YD, Lin SX (2011) Towards hierarchical context: unfolding visual community potential for interactive video retrieval. Multimed Tools Appl 55:151–178

    Article  Google Scholar 

  26. Praks P, Kucera R, Izquierdo E (2008) The sparse image representation for automated image retrieval. Image Processing, ICIP 2008. 15th IEEE International Conference on. IEEE, pp 25–28

  27. Willett RM, Gehm ME, Brady DJ (2007) Multiscale reconstruction for computational spectral imaging. In Electronic Imaging 2007. International Society for Optics and Photonics. pp 64980L-64980L

  28. Wu J, Worring M (2012) Efficient genre-specific semantic video indexing. IEEE Trans Multimedia 14(2):291–301

    Article  Google Scholar 

  29. Yeh MC, Cheng KT (2011) Fast visual retrieval using accelerated sequence matching. IEEE Trans Multimedia 13(2):320–329

    Article  Google Scholar 

  30. Yuso Y, Christmas WJ, Kittler JV (2000) Video shot cut detection using adaptive thresholding. In Proceedings of British Machine Video Conference, Bristol

  31. Zhang Y, Mei S, Chen Q, Chen Z (2008) A novel image/video coding method based on compressed sensing theory. IEEE Int. Conf. on acoustics, speech, and signal processing

  32. Zhang Y, Mei S, Chen Q, Chen Z (2008) A multiple description image/video coding method by compressed sensing theory. In IEEE Int. Symp. on Circuits and Systems

  33. Zhao X, Lin KH, Fu Y, Hu YX, Liu YC, Huang TS (2011) Text from corners: a novel approach to detect text and caption in videos. IEEE Trans Image Process 20(3):790–799

    Article  MathSciNet  Google Scholar 

  34. Zhao SJ, Precioso F, Cord M (2011) Spatio-temporal tube data representation and kernel design for SVM-based video object retrieval system. Multimed Tools Appl 55:105–125

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61103114 and 61004112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangbo Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, S., Zhou, S. & Siddique, M.A. A compressed sensing approach for query by example video retrieval. Multimed Tools Appl 72, 3031–3044 (2014). https://doi.org/10.1007/s11042-013-1573-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1573-y

Keywords

Navigation