Abstract
This article presents a motion recognition strategy with rejection ability to extract the meaningful actions according to a given set of motion classes, or categories or types and reject such input patterns whose categories are not known. During the online recognition phrase, the multiple one-versus-one support vector machines are aggregated with the majority voting strategy over the most recent frames in a sliding window to predict the most probable type at each instance. And then, the corresponding index motion map is utilized to determine whether the predicted type should be accepted or not. The motion will be considered to be unknown when consecutive multiple frames are rejected. As a contribution, an adjusted self-organizing map algorithm is proposed to automatically learn the index motion map for each motion class, where the map size and topology are dynamically tuned by the intrinsic characteristics of the trained motions dataset. At the postprocessing step, the procedure is enhanced by an efficient key patterns-based verification strategy, which significantly improves the recognition precision. As a further contribution, we introduce a genetic algorithm learning algorithm to automatically learn the necessary key patterns for each class base on the previous learned index motion map. We evaluate our motion recognition model on various experiments conducted on synthetic data and real data from the freely available sets of motion capture database (HDM05). Experiment results show that the proposed strategy can not only classify motions correctly, but also identify the existence of unknown motion types.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-013-1749-5/MediaObjects/11042_2013_1749_Fig15_HTML.gif)
Similar content being viewed by others
References
Alahakoon D, Halgamuge SK, Srinivasan B (2000) Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans Neural Netw 11:601–614
Amit B, Philippe B, Chris D (2006) A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(8):2282–2291
Arikan O, Forsyth DA, O’Brien J (2003) Motion synthesis from annotations. ACM Trans Graph 33(3):402–408
Barbic J, Safonova A, Pan J-Y, et al. (2004) Segmenting motion capture data into distinct behaviors. Graph Interface, pp. 185–194
Bertolami R, Zimmermann M, Bunke H (2006) Rejection strategies for offline handwritten text line recognition. Pattern Recogn Lett 27(16):2005–2012
Blackmore J, Miikkulainen R (1993) Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. Proc IEEE Int Conf Neural Netw (ICNN’93) 1:450–455
Cao D, Masoud OT, Boley D, et al. (2004) Online motion classification using support vector machines. Proc IEEE Int Conf Robot Automat, pp. 2291–2296
Chiu C, Chao S, Wu M et al (2004) Content-based retrieval for human motion data. J Vis Commun Image Represent 15(3):446–466
Eiben AE, Smith JE (2007) Introduction to evolutionary computing. Springer
Fritzke B (1994) Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Netw 7:1441–1460
Fritzke B (1995) Growing grid: a self-organizing network with constant neighborhood range and adaption strength. Neural Process Lett 2(5):1–5
Furaoa S, Hasegawa O (2006) An incremental network for on-line unsupervised classification and topology learning. Neural Netw 19:90–106
Gorski N (1997) Optimizing error-reject trade off in recognition systems. Proc ICDAR, pp. 1092–1096
Guenterberg E, Yang AY, Ghasemzadeh H et al (2009) A method for extracting temporal parameters based on hidden markov models in body sensor networks with inertial sensors. IEEE Trans Inf Technol Biomed 13(6):1019–1030
Guha T, Rabab K Ward. Learning sparse representations for human action recognition. IEEE Trans Pattern Anal Mach Intell, August, 34(8):1576–1588
Guo K, Ishwar P, Konrad J (2007) Action recognition in video by sparse representation on covariance manifolds of silhouette tunnels. Tunnels ACCV, pp. 442–451
Jiang M, Wang Z (2012) An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. IEEE Trans Inf Technol Biomed 16(4):691–699
Kahol K, Tripathi P. Panchanathan S (2004) Automated gesture segmentation from dance sequences. Proc IEEE Int Conf Face Gesture Recogn, pp. 883–888
Kahol K, Tripathi P, Panchanathan S, Rikakis T (2003) Gesture segmentation in complex motion sequences. Proc ICIP-03, pp. 105–108
Koerich AL (2004) Rejection strategies for handwritten word recognition. Proc IWFHR, pp. 479–484
Kohonen T (1988) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69
Krebel U (1999) Pairwise classification and support vector machines. In: Scholkops B, Burges CJC, Smola AJ (eds) Advances in Kernel methods: Support vector learning. MIT Press, Cambridge, pp 255–268
Landgrebe TCW, Tax DMJ, Paclík P, Duin RPW (2006) The interaction between classification and reject performance for distance-based reject-option classifiers. Pattern Recogn Lett 27(8):908–917
Li C, Zheng SQ. Prabbakaran B (2007) Segmentation and recognition of motion streams by similarity search, ACM Transaction on Multimedia Computing. Commun Appl vol. 3, no.3, article No. 16
Lv F, Nevatia R (2006) Recognition and segmentation of 3-D human action using HMM and multi-class AdaBoost. Proc ECCV, pp. 359–372
Manabe S, Hatanaka T, Uosaki K, et al. (2006) Training hidden markov model structure with genetic algorithm for human motion pattern classification. Proc SICE-ICASE Int Joint Conf pp. 618–622
Meinard Müller, Tido Röder (2006) Motion templates for automatic classification and retrieval of motion capture data, in Proceedings of the 2006 ACM Siggraph/Eurographics Symposium on Computer Animation, pp.137–146.
Müller M, Baak A, Seidel H-P (2009) Efficient and robust annotation of motion capture data. Proc 2009 ACM Siggraph/Eurographics Symp Comput Animat pp. 17–26
Muller M, Roer T, Clausen M, et al. (2007) Documentation: Mocap database HDM05, Computer graphics technical report CG-2007-2, University Bonn, June 2007. http://www.mpi-inf.mpg.de/resources/HDM05
Pfau T, Ferrari M, Parsons K et al (2008) A hidden markov model based stride segmentation technique applied to equine inertial sensor trunk movement data. J Biomech 41(1):216–220
Pitrelli J, Perrone MP (2002) Confidence modeling for verification post-processing for handwriting recognition. Proc IWFHR, pp. 30–35
Pitrelli J, Perrone MP (2003) Confidence-scoring post-processing for off-line handwritten-character recognition verification. Proc ICDAR, pp. 278–282
Qiu Q, Jiang Z, Chellappa R (2011) Sparse dictionary-based representation and recognition of action attributes. Comput Vis (ICCV), 2011 I.E. Int Conf, pp. 707–714
Rizvi SA, Saasawi TN, Nasrabadi NM (2000) A clutter rejection technique for FLIR imagery using region based principal component analysis. Pattern Recogn 33(11):1931–1933
Sakamoto Y, Kuriyama S, Kaneko T (2004) Motion map: image-based retrieval and segmentation of motion data. Proc 2004 ACM SIGGRAPH/Eurographics Symp Comput Animat, pp. 259–266
Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471
Scholkopf B, Smola A (2002) Learning with kernels, support vector machines, regularization, optimization, and beyond. MIT Press
Shen F, Hasegawa O (2007) An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Netw 20:893–903
van Kasteren T, Englebienne G, Kröse BJA (2010) An activity monitoring system for elderly care using generative and discriminative models. Pers Ubiquit Comput 14(6):489–498
Vapnik V (1998) Statistical learning theory. Wiley, New York
Wang SB, Quattoni A, Morency L-P, Demirdjian D, Darrell T (2006) Hidden conditional random fields for gesture recognition. IEEE Comput Soc Conf Comput Vis Pattern Recogn (CVPR), pp. 1521–1527
Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse machine sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227
Wu S, Xia S, Wang Z et al (2009) Efficient motion data indexing and retrieval with local similarity measure of motion strings. Vis Comput 25(5–7):499–508
Yang K, Sbababi C (2004) A PCA-based similarity measure for multivariate time series. Proc of the 2nd ACM Int Workshop Multimed Databases, pp. 65–74
Zhao Q, Wang L, Horace HS Ip, et al. (2010) Human 3D motion recognition based on spatial-temporal context of joints. Int Conf Pattern Recogn (ICPR), pp. 2740–2743
Zheng E-h, Zou C, Sun J, Chen L (2011) Cost-sensitive SVM with error cost and class-dependent reject cost. Int J Comput Theory Eng 3(1):130–135
Acknowledgments
The data used in this paper was obtained from HDM05. Thanks for their sharing. This research is partially supported by National Natural Science Funds of China (61173122), Key Project of Natural Science Foundation of Hunan Province, China (12JJ2038), Natural Science Foundation of Hunan Province, China (09JJ6102), The Postdoctoral Science Foundation of HuNan Academy of Science (2012RS4027), Social Science Foundation of HuNan province (12YBB286), The Scientific Research Fund of Hunan Provincial Education Department (12C0791).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cai, M., Zou, B., Gao, H. et al. Motion recognition for 3D human motion capture data using support vector machines with rejection determination. Multimed Tools Appl 70, 1333–1362 (2014). https://doi.org/10.1007/s11042-013-1749-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-013-1749-5