Skip to main content
Log in

Robust bandwidth aggregation for real-time video delivery in integrated heterogeneous wireless networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Bandwidth aggregation is the process of integrating the limited channel resources available in heterogeneous wireless networks. Optimizing this process is an important step towards improving the throughput and reliability for the bandwidth-demanding video applications. In this paper, we investigate the bandwidth aggregation for real-time video delivery in heterogeneous wireless networks from a video server to a multihomed client. Forward Error Correction (FEC) coding is commonly adopted for data protection in implementing loss-resilient wireless video transmission systems. However, the inherent channel unreliability, along with the video traffic variability, can significantly degrade the FEC performance. To address the critical issues, we propose a ROBust BandwIdth Aggregation (ROBBIA) scheme that includes three phases: (1) FEC redundancy adaption, (2) transmission rate assignment, and (3) path interleaving. We present a mathematical formulation of the transmission scheduling to minimize end-to-end video distortion and provide comprehensive analysis for the channel distortion. We conduct the performance evaluation in the Exata and simulation results show that ROBBIA outperforms existing bandwidth aggregation approaches in improving video quality in terms of PSNR (Peak Signal-to-Noise Ratio).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. We choose the JSVM in convenience for the source code integration as both Exata and JSVM are developed using C++. However, the H.264/AVC JM (http://iphome.hhi.de/suehring/tml/) software is developed using C language.

References

  1. Alpcan T, Singh J, Basar T (2009) Robust rate control for heterogeneous network access in multihomed environments. IEEE Trans Mobil Comput 8(1):41–51

    Article  Google Scholar 

  2. Auwera G, Reisslein M (2009) Implications of smoothing on statistical multiplexing of H. 264/AVC and SVC video streams. IEEE Trans Broadcast 55(3):541–558

    Article  Google Scholar 

  3. Chebrolu K, Rao RR (2006) Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Trans Mob Comput 5(4):388–403

    Article  Google Scholar 

  4. Chow ALH, Yang H, Xia CH, Kim M, Liu Z, Lei H (2010) EMS: encoded multipath streaming for real-time live streaming applications. In: Proceedings of IEEE ICNP

  5. Cisco (2013) Cisco visual networking index: global mobile data traffic forecast update 2012–2017

  6. Daniel Wallace T, Shami Abdallah (2012) A review of multihoming issues using the stream control transmission protocol. IEEE Commun Surv Tutor 14(2):565–578

    Article  Google Scholar 

  7. Fashandi S, Gharan S, Khandani A (2010) Path diversity over packet switched networks: performance analysis and rate allocation. IEEE/ACM Trans Netw 18(5):1373–1386

    Article  Google Scholar 

  8. Fiandrotti A, Gallucci D, Masala E (2008) Traffic prioritization of H. 264/SVC video over 802.11 e ad hoc wireless networks. In: Proceedings of IEEE ICCCN

  9. Fraleigh C, Moon S, Lyles B (2003) Packet-level traffic measurements from the sprint IP backbone. IEEE Netw 17(6):6–16

    Article  Google Scholar 

  10. Freris N, Hsu C, Singh J, Zhu X (2013) Distortion-aware scalable video streaming to multinetwork clients. IEEE/ACM Trans Netw 21(2):469–481

    Article  Google Scholar 

  11. Frossard P (2000) FEC performance in multimedia streaming. IEEE Commun Lett 5:122–124

    Article  Google Scholar 

  12. Han S, Joo H, Lee D, H Song (2011) An end-to-end virtual path construction system for stable live video streaming over heterogeneous wireless networks. IEEE J Selec Areas Commun 29(5):1032–1041

    Article  Google Scholar 

  13. Heinzelman W, Budagavi M, Talluri R (1999) Unequal error protection of MPEG-4 compressed video. In: Proceedings of IEEE ICIP

  14. Horn U, Stuhlmuller K, Link M (1999) Robust internet video transmission based on scalable coding and unequal error protection. Signal Proc Image Commun 15(1):77–94

    Article  Google Scholar 

  15. Ismail M, Zhuang W (2012) “Decentralized radio resource allocation for single-network and multi-homing services in cooperative Heterogeneous Wireless Access Medium,”. IEEE Trans Wirel Commun 19(11):4085–4095

    Article  Google Scholar 

  16. Jain M, Dovrolis C (2002) Pathload: a measurement tool for end-to-end available bandwidth. Passive and Active Measurement Workshop

  17. Jain M, Dovrolis C (2003) End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput. IEEE/ACM Trans Netw 11(4):537–49

    Article  Google Scholar 

  18. Jurca D, Frossard P (2007) Media flow rate allocation in multipath networks. IEEE Trans Multimed 9(6):1227–1240

    Article  Google Scholar 

  19. Jurca D, Frossard P (2007) Video packet selection and scheduling in multipath networks. IEEE Trans Multimed 9(3):629–641

    Article  Google Scholar 

  20. Jurca D, Frossard P (2009) Media flow rate allocation in multipath networks. IEEE Trans Multimed 9(7):1227–1240

    Google Scholar 

  21. Kompella S, Mao S, Hou YT, Sherali HD (2009) On path selection and rate allocation for video in wireless mesh networks. IEEE/ACM Trans Netw 17(1):212–224

    Article  Google Scholar 

  22. Nightingale J, Wang Q, Grecos C (2012) Empirical evaluation of H.264/SVC streaming in resource-constrained multihomed mobile networks. Multimedia Tools Appl:1–25

  23. Oliveira T, Mahadevan S, Agrawal DP (2011) Handling network uncertainty in heterogeneous wireless networks. In: Proceedings of IEEE INFOCOM

  24. Piamrat K, Ksentini A, Bonnin J, Viho C (2011) Radio resource management in emerging heterogeneous wireless networks. Computer Communications 34:9

    Article  Google Scholar 

  25. Ribeiro V, Riedi R, Baraniuk R, Navratil J, Cottrell L (2003) pathChirp: efficient available bandwidth estimation for network paths. Passive and active measurement workshop

  26. Sharma V, Kalyanaraman S, Kar K, Ramakrishnan K, Subramanian V (2009) MPLOT: a transport protocol exploiting multipath diversity. In: Proceedings of IEEE INFOCOM

  27. Si P, Ji H, Yu FR (2009) Optimal network selection in heterogeneous wireless multimedia networks. Wirel Netw 16(5):1277–1288

    Article  Google Scholar 

  28. Song W, Zhuang W (2012) Performance Analysis of Probabilistic Multipath Transmission of Video Streaming Traffic over Multi-Radio Wireless Devices. IEEE Trans Wirel Commun 11(4):1554–1564

    Article  Google Scholar 

  29. Stuhlmüller K, Färber N, Link M, Girod B (2000) Analysis of video transmission over lossy channels. IEEE J Sel Areas Commun 18(6):1012–1032

    Article  Google Scholar 

  30. Wien M, Schwarz H, Oelbaum T (2007) Performance analysis of SVC. IEEE Trans Circ Sys Vi Technol 17(9):1194–1203

    Article  Google Scholar 

  31. Yooon J, Zhang H, Banerjee S, Rangarajan S (2012) MuVi: a multicast video delivery scheme for 4G cellular networks. In: Proceedings of ACM MobiCom

  32. Zhou A, Liu M, Song Y et al (2008) A new method for end-to-end available bandwidth estimation. In: Proceedings of IEEE GLOBECOM

  33. Zhuang W, Ismail M (2012) Cooperation in wireless communication networks. IEEE Wirel Commun 19(2):10–20

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2011CB302506, 2012CB315802; National Key Technology Research and Development Program of China “Research on the mobile community cultural service aggregation supporting technology” (Grant No. 2012BAH94F02); Novel Mobile Service Control Network Architecture and Key Technologies (2010ZX03004-001-01); National High-tech R&D Program of China (863 Program) under Grant No. 2013AA102301; National Natural Science Foundation of China under Grant No. 61003067, 61171102, 61001118, 61132001; Program for New Century Excellent Talents in University (Grant No. NCET-11-0592); Project of New Generation Broadband Wireless Network under Grant No. 2011ZX03002-002-01; Beijing Nova Program under Grant No. 2008B50.

We would like to express our sincere gratitude for the anonymous reviewers who provide the suggestions to improve the paper quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Shang, Y., Qiao, X. et al. Robust bandwidth aggregation for real-time video delivery in integrated heterogeneous wireless networks. Multimed Tools Appl 74, 4117–4138 (2015). https://doi.org/10.1007/s11042-013-1813-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1813-1

Keywords

Navigation