Skip to main content
Log in

Ray feature analysis for volume rendering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A major difficulty of volume rendering has been the recognition of different semantic regions which is crucial for the appropriate assignment of optical properties. Such difficulty arises from the fact that different semantic regions may share the same input value ranges. In this paper, we introduce the concept of ray-feature analysis and propose an on-the-fly state transition framework for the recognition of different semantic regions during volume rendering without the need of explicit segmentation information. In this framework, we consider the value along the path of a ray as a 1D-signal, and by making use of the feature analysis of these 1D-signals, semantic information of the current ray sample is extracted. To define the condition of state transition, we propose a method called “threshold based state transition”. Since the parameters of the threshold based state transition method is not intuitive, an automatic learning method which enables an interactive user labeling routine is proposed. Experimental results show that our proposed framework is cost effective for on-the-fly semantic region recognition, and is especially suitable for closed, mostly convex, multi-layered objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beyer J, Hadwiger M, Wolfsberger S, Buhler K (2007) High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Trans Vis Comput Graph 13(6):1696–1703

    Article  Google Scholar 

  2. Bruckner S, Grimm S, Kanitsar A, Groller M (2006) Illustrative context-preserving exploration of volume data. IEEE Trans Vis Comput Graph 12(6):1559–1569

    Article  Google Scholar 

  3. Caban J, Rheingans P (2008) Texture-based transfer functions for direct volume rendering. IEEE Trans Vis Comput Graph 14(6):1364–1371

    Article  Google Scholar 

  4. Correa C, Ma K (2008) Size-based transfer functions: a new volume exploration technique. IEEE Trans Vis Comput Graph 14(6):1380–1387

    Article  Google Scholar 

  5. Correa C, Silver D, Chen M (2006) Discontinuous displacement mapping for volume graphics. In: Proceedings volume graphics, vol 6. pp 9–16

  6. Correa C, Silver D, Chen M (2006) Feature aligned volume manipulation for illustration and visualization. IEEE Trans Vis Comput Graph 12(5):1069–1076

    Article  Google Scholar 

  7. Hadwiger M, Berger C, Hauser H (2003) High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. IEEE Visualization 2003, VIS 2003 IEEE, pp 301–308

  8. Haidacher M, Patel D, Bruckner S, Kanitsar A, Groller M (2010) Volume visualization based on statistical transfer-function spaces. In: IEEE 2010 Pacific Visualization symposium (PacificVis) . IEEE, pp 17–24

  9. Hauser H, Mroz L, Italo Bischi G, Groller M (2001) Two-level volume rendering. IEEE Trans Vis Comput Graph 7(3):242–252

    Article  Google Scholar 

  10. Kindlmann G, Durkin J (1998) Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of the 1998 IEEE symposium on volume visualization. ACM, pp 79–86

  11. Kindlmann G, Whitaker R, Tasdizen T, Moller T (2003) Curvature-based transfer functions for direct volume rendering: methods and applications. In: IEEE Visualization 2003, VIS 2003. IEEE, pp 513–520

  12. Kniss J, Kindlmann G, Hansen C (2002) Multidimensional transfer functions for interactive volume rendering. IEEE Trans Vis Comput Graph 8(3):270–285

    Article  Google Scholar 

  13. Kruger J, Schneider J, Westermann R (2006) Clearview: an interactive context preserving hotspot visualization technique. IEEE Trans Vis Comput Graph 12(5):941–948

    Article  Google Scholar 

  14. Lathen G, Lindholm S, Lenz R, Persson A, Borga M (2012) Automatic tuning of spatially varying transfer functions for blood vessel visualization. IEEE Trans Vis Comput Graph 18(12):2345–2354

    Article  Google Scholar 

  15. Nagy Z, Klein R (2003) Depth-peeling for texture-based volume rendering. In: Proceedings 11th pacific conference on computer graphics and applications, 2003. IEEE, pp 429–433

  16. Patel D, Haidacher M., Balabanian J, Groller E (2009) Moment curves. In: IEEE pacific visualization symposium, 2009. PacificVis’ 09. IEEE, pp 201–208

  17. Praßni J, Ropinski T, Mensmann J, Hinrichs K (2010) Shape-based transfer functions for volume visualization. In: IEEE 2010 Pacific Visualization symposium (PacificVis). IEEE, pp 9–16

  18. Rezk-Salama C, Kolb A (2006) Opacity peeling for direct volume rendering. In: Computer graphics forum, vol 25. Wiley Online Library, pp 597–606

  19. Takahashi S, Takeshima Y, Fujishiro I (2004) Topological volume skeletonization and its application to transfer function design. Graph Models 66(1):24–49

    Article  MATH  Google Scholar 

  20. Tappenbeck A, Preim B, Dicken V (2006) Distance-based transfer function design: specification methods and applications. In: Simulation und visualisierung. pp 259–274

  21. Viola I, Kanitsar A, Groller M (2005) Importance-driven feature enhancement in volume visualization. IEEE Trans Vis Comput Graph 11(4):408–418

    Article  Google Scholar 

  22. Wang L, Zhao Y, Mueller K, Kaufman A (2005) The magic volume lens: an interactive focus+ context technique for volume rendering. In: Visualization, 2005. VIS 05. IEEE. IEEE, pp 367–374

  23. Wu Y, Qu H (2007) Interactive transfer function design based on editing direct volume rendered images. IEEE Trans Vis Comput Graph 13(5):1027–1040

    Article  Google Scholar 

  24. Xiang D, Tian J, Yang F, Yang Q, Zhang X, Li Q, Liu X (2011) Skeleton cuts an efficient segmentation method for volume rendering. IEEE Trans Vis Comput Graph 17(9):1295–1306

    Article  Google Scholar 

  25. Yang F, Li Q, Xiang D, Cao Y, Tian J (2012) A versatile optical model for hybrid rendering of volume data. IEEE Trans Vis Comput Graph 18(6):925–937

    Article  Google Scholar 

  26. Zhou J, Takatsuka M (2009) Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE Trans Vis Comput Graph 15(6):1481–1488

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Basic Research Program of China (973 Program) under Grant 2011CB707700, the National Natural Science Foundation of China under Grant No. 81227901, 61231004, the Chinese Academy of Sciences Fellowship for Young International Scientists under Grant 2013Y1GB0005, the National High Technology Research and Development Program of China (863 Program) under 2012AA021105, the Guangdong Province-Chinese Academy of Sciences comprehensive strategic cooperation program under 2010A090100032 and 2012B090400039, the NSFC-NIH Biomedical collaborative research program under 81261120414, the Beijing Natural Science Foundation under Grant No. 4132080, the Fundamental Research Funds for the Central Universities under Grant No. 2013JBZ014, the National Basic Research Program der Grant No. 61301002 and No. 61302025.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Jie Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Yang, F., Li, X. et al. Ray feature analysis for volume rendering. Multimed Tools Appl 74, 7621–7641 (2015). https://doi.org/10.1007/s11042-014-1994-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-1994-2

Keywords

Navigation