Abstract
Although Time-of-Flight (ToF) camera can provide real-time depth information from a real scene, the resolution of depth map captured by ToF camera is rather limited compared to HD color cameras, and thus it cannot be directly used in 3D reconstruction. In order to handle this problem, this paper proposes a novel compressive sensing (CS) and dictionary learning based depth map super-resolution (SR) method, which transforms a low resolution depth map to a high resolution depth map. Different from previous depth map SR methods, this algorithm uses a joint dictionary learning method with both low and high resolution depth maps, and this method also builds a sparse vector classification method which is used in depth map SR. Experimental results show that the proposed method outperforms state-of-the-art methods for depth map super-resolution.



Similar content being viewed by others
References
3dv systems, z-cam, http://www.3dvsystems.com
Baker S, Kanade T (2002) Limits on super-resolution and how to break them. IEEE Trans Pattern Anal Mach Intell 24(9):1167–1183
Baraniuk RG (2007) Compressive sensing. IEEE Signal Proc Mag 24(4):118–120
Candès EJ (2006) Compressive sampling. Proc Int Congr Math Madrid Spain 3:1433–1452
Canesta Inc (2006) Canestavision electronic perception development kit, http://www.canesta.com/
Chang H, Yeung D, Xiong Y (2004) Super-resolution through neighbor embedding. IEEE Conference on Computer Vision and Pattern Recognition, 1:1–8
Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306
Freeman W, Jones T, Pasztor E (2002) Example-based superresolution. IEEE Comput Graph Appl 22(2):56–65
Freeman W, Pasztor E, Carmichael O (2000) Learning lowlevel vision. Int J Comput Vis 40(1):25–47
Gao X, Zhang K, Li X, Tao D (2012) Joint learning for single-image super-resolution via a coupled constraint. IEEE Trans Image Process 21(2):469–480
Geman S, Geman D (1984) Stochastic relaxation, gibbs distribution, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(4):721–741
Glasner D, Bagon S, Irani M (2009) “Super-resolution from a single image” ICCV pp. 349–356
Han Y, Wu F, Tian Q, Zhuang Y (2012) Image annotation by input-output structural grouping sparsity. IEEE Trans Image Process (IEEE T-IP) 21(6):3066–3079
Han Y, Yang Y, Ma Z, Shen H, Sebe N, Zhou X (2014) Image attribute adaptation. IEEE Trans Multimed (IEEE T-MM). doi:10.1109/TMM.2014.2306092
Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans Graph 26(3):96
PMD camcube (2009) http://www.pmdtec.com/
Protter M, Elad M, Takeda H, Milanfar P (2009) Generaliizing the nonlocal-means to super-resolution resconstruction. IEEE Trans Image Process 18(1):36–51
Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
Scharstein D and Szeliski R (2002) Middlebury stereo evaluation-version 2, http://vision.middlebury.edu/stereo/eval
Tang Y, Yuan Y, Yan P, Li X (2011) Single-image superresolution via local learning. Int J Mach Learn Cybern 6(9):15–23
Tseng P, Yun S (2009) A coordinate gradient descent method for nonsmooth separable minimization. Math Program Ser B 117:387–423
Wang J, Zhu S, Gong Y (2009) Resolution enhancement based on learning the sparse association of image patches. Pattern Recogn Lett 31(1):1–10
Wu F, Lu X, Zhang Y, Zhang Z, Yan S, Zhuang Y (2013) Cross-media semantic representation via Bi-directional learning to rank. Proc 2013 ACM Int Conf Multimed (ACM Multimedia, Full Paper) 877–886
Wu F, Zhou Y, Yang Y, Siliang T, Zhang Y, Zhuang Y (2014) Sparse multi-modal hashing. IEEE Trans Multimed 16(2):427–439
Xu Z, Schwarte R, Heinol H, Buxbaum B, Ringbeck T (1998) Smart pixel C photonic mixer device (pmd), M2VIP 1998 - Int Conf Mechatron Mach Vision Pract 259–264
Yang J, Wright J, Huang T, Ma Y (2010) Image superresolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873
Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China (Grant No. 61271338), the National High Technology Research and Development Program (863) of China (Grant No. 2012AA011505), the Zhejiang Provincial Natural Science Foundation of China (Grant No. Q14F010020), and the Open Projects Program of National Laboratory of Pattern Recognition of China (Grant No. 201306308).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, LW., Wang, LH. & Zhang, M. Depth map Super-Resolution based on joint dictionary learning. Multimed Tools Appl 74, 467–477 (2015). https://doi.org/10.1007/s11042-014-2002-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-014-2002-6