Skip to main content
Log in

Diffuse global illumination in particle spaces

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Despite substantial efforts in recent years to accelerate rendering methods, the traditional method, based on a combination of recursive ray tracing (RT), photon mapping (PM), and final gathering (FG), is still regarded as computationally intensive. In this paper, we propose a practical ray tracing model that can be readily implemented on a graphics processing unit (GPU) to provide high-speed generation of global illumination, whose quality is comparable to that generated through the traditional time-consuming RT/PM/FG rendering method. Our method employs two particle spaces to generate computationally intensive diffuse interreflection more efficiently. The complexity of light transport within a scene is simulated in one particle space by using indirect light scattering and gathering operations. The calculation that estimates the reflected radiance caused by diffuse interreflection is optimized by using a second particle space, where only the radiance required for final rendering can be rapidly approximated, based on the simulated light flux in the first particle space. We present several example scenes to demonstrate that our ray tracing scheme enables the use of a rendering pipeline that fully exploits the computing architecture of current manycore processors to reproduce effective high-quality global illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arikan O, Forsyth D, O’Brien J (2005) Fast and detailed approximate global illumination by irradiance decomposition. ACM Trans Graph 24(3):1108–1114

    Article  MATH  Google Scholar 

  2. Christensen P (2008) Point-based approximate color bleeding. Pixar Technical Memo 08–01

  3. Dachsbacher C, Stamminger M (2005) Reflective shadow maps. In: Proceedings of the symposium on interactive 3D graphics and games, pp 203–231

  4. Dachsbacher C, Stamminger M (2006) Splatting indirect illumination. In: Proceedings of the symposium on interactive 3D graphics and games, pp 93–100

  5. Dachsbacher C, Stamminger M, Drettakis G, Durand F (2007) Implicit visibility and antiradiance for interactive global illumination. ACM Trans Graph 26. Article No. 61

  6. Dong Z, Kautz J, Theobalt C, Seidel H-P (2007) Interactive global illumination using implicit visibility. In: Proceedings of pacific graphics, pp 77–86

  7. Drettakis G, Sillion F (1997) Interactive update of global illumination using a line-space hierarchy. In: Proceedings of the SIGGRAPH ’97, pp 57–64

  8. Fabianowski B, Dingliana J (2009) Interactive global photon mapping. Comput Graph Forum 28(4):1151–1159

    Article  Google Scholar 

  9. Gautron P, Křivánek J, Bouatouch K, Pattanaik S (2005) Radiance cache splatting: a GPU-friendly global illumination algorithm. In: Proceedings of the Eurographics symposium on rendering, pp 55–64

  10. Granier X, Drettakis G (2001) Incremental updates for rapid glossy global illumination. Comput Graph Forum 20(3):268–277

    Article  Google Scholar 

  11. Hašan M, Pellacini F, Bala K (2007) Matrix row-column sampling for the many-light problem. ACM Trans Graph 26. Article No. 26

  12. Jensen HW (1996) Global illumination using photon maps. In: Proceedings of the Eurographics workshop on rendering techniques, pp 21–30

  13. Jensen HW (2001) Realistic image synthesis using photon mapping. A K Peters, Ltd. ISBN 1-56881-147-0

  14. Jin B, Ihm I, Chang B, Park C, Lee W, Jung S (2009) Selective and adaptive supersampling for real-time ray tracing. In: Proceedings of high performance graphics, pp 117–125

  15. Kajiya J (1986) The rendering equation. In: Proceedings of ACM SIGGRAPH, vol 20, pp 143–150

  16. Keller A Keller A (1997) Instant radiosity. In: Proceedings of ACM SIGGRAPH, pp 49–56

  17. Křivánek J, Gautron P, Pattanaik S, Bouatouch K (2005) Radiance caching for efficient global illumination computation. IEEE Trans Vis Comput Graph 11(5):550–561

    Article  Google Scholar 

  18. Laine S, Saransaari H, Kontkanen J, Lehtinen J, Aila T (2007) Incremental instant radiosity for real-time indirect illumination. In: Proceedings of the Eurographics symposium on rendering, pp 277–286

  19. Larsen B, Christensen N (2004) Simulating photon mapping for real-time applications. In: Proceedings of the Eurographics symposium on rendering, pp 123–131

  20. Lehtinen J, Zwicker M, Turquin E, Kontkanen J, Durand F, Sillion F, Aila T (2008) A meshless hierarchical representation for light transport. ACM Trans Graph (Proc. of ACM SIGGRAPH 2008) 27. Article No. 37

  21. McGuire M, Luebke DD (2009) Hardware-accelerated global illumination by image space photon mapping. In: Proceedings of high performance graphics, pp 77–89

  22. Nichols G, Shopf J, Wyman C (2009) Hierarchical image-space radiosity for interactive global illumination. Comput Graph Forum 28(4):1141–1149

    Article  Google Scholar 

  23. Nichols G, Wyman C (2009) Multiresolution splatting for indirect illumination. In: Proceedings of the symposium on interactive 3D graphics and games, pp 83–90

  24. NVIDIA (2012) NVIDIA CUDA: NVIDIA CUDA C Programming Guide (Version 5.0)

  25. Purcell T, Donner C, Cammarano M, Jensen H, Hanrahan P (2003) Photon mapping on programmable graphics hardware. In: Proceedings of graphics hardware, pp 41–50

  26. Ritschel T, Dachsbacher C, Grosch T, Kautz J (2012) The state of the art in interactive global illumination. Comput Graph Forum 31(1):160–188

    Article  Google Scholar 

  27. Ritschel T, Engelhardt T, Grosch T, Seidel H-P, Kautz J, Dachsbacher C (2009) Micro-rendering for scalable, parallel final gathering. ACM Trans Graph 28(5). Article No. 132

  28. Ritschel T, Grosch T, Kautz J, Seidel H-P (2008) Interactive global illumination based on coherent surface shadow maps. In: Proceedings of graphics interface, pp 185–192

  29. Ritschel T, Grosch T, Kim M, Seidel H-P, Dachsbacher C, Kautz J (2008) Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans Graph 27. Article No. 129

  30. Schmitz A, Tavenrath M, Kobbelt L (2008) Interactive global illumination for deformable geometry in CUDA. Comput Graph Forum 27(7):1979–1986

    Article  Google Scholar 

  31. Sloan P-P, Kautz J, Snyder J (2002) Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans Graph 21:527–536

    Article  Google Scholar 

  32. Tabellion E, Lamorlette A (2004) An approximate global illumination system for computer generated films. ACM Trans Graph 23(3):469–476

    Article  Google Scholar 

  33. Umenhoffer T, Szirmay-Kalos L (2007) Robust diffuse final gathering on the GPU. In: Proceedings of WSCG

  34. Walter B, Arbree A, Bala K, Greenberg D (2006) Multidimensional lightcuts. ACM Trans Graph 25(3):1081–1088

    Article  Google Scholar 

  35. Walter B, Fernandez S, Arbree A, Bala K, Donikian M, Greenberg D (2005) Lightcuts: a scalable approach to illumination. ACM Trans Graph 24(3):1098–1107

    Article  Google Scholar 

  36. Wang R,Wang R, Zhou K, PanM, Bao H (2009) An efficient GPU-based approach for interactive global illumination. ACM Trans Graph 28. Article No. 91

  37. Ward G, Heckbert P (1992) Irradiance gradients. In: Proceedings of the Eurographics workshop on rendering, pp 85–98

  38. Ward G, Rubinstein F, Clear R (1988) A ray tracing solution for diffuse interreflection. In: Proceedings of ACM SIGGRAPH, pp 85–92

  39. Yao C,Wang B, Chan B, Yong J, Paul J-C (2010) Multi-image based photon tracing for interactive global illumination of dynamic scenes. Comput Graph Forum 29:1315–1324

    Article  Google Scholar 

  40. Zhou K, Hou Q, Wang R, Guo B (2008) Real-time KD-tree construction on graphics hardware. ACM Trans Graph 27(5):1–11

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2008958).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanghun Park or Insung Ihm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, B., Park, S. & Ihm, I. Diffuse global illumination in particle spaces. Multimed Tools Appl 74, 4987–5006 (2015). https://doi.org/10.1007/s11042-014-2132-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2132-x

Keywords

Navigation