Skip to main content
Log in

Comparative assessment of efficiency for content based image retrieval systems using different wavelet features and pre-classifier

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2016

Abstract

Recently, Content Based Image Retrieval (CBIR) has emerged as an active research area having applications in various fields. There exist several states-of-the art CBIR systems that uses both spatial and transform features as input. However, as hardly any details study reported so far on the effectiveness of different transform domain features in CBIR paradigm. This motivates the current article where we have presented extensive comparative assessment of five different transform domain features considering various filter combinations. Three different feature representation schemes and three different classifiers have been used for this purpose. Extensive experiments on four widely used benchmark image databases (Oliva, Caltech101, Caltech256 and MIRFlickr25000) were conducted to determine the best combination of transform, filters, feature representation and classifier. Furthermore, we have also attempted to discover the optimal features from the best combinations using maximal information compression index (MICI). Both qualitative and quantitative evaluations show that the combination of Least Square Support Vector Machine (LSSVM) as a classifier and the statistical parametric framework based reduced feature representation in Non-Subsampled Contourlet Transform (NSCT) with “pyrexc” and “sinc” filters gives the best retrieval performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Acharyya M, Kundu MK (2001) An adaptive approach to unsupervised texture segmentation using M-band wavelet tranform. Signal Process 81(7):1337–1356

    Article  MATH  Google Scholar 

  2. Ashley JJ, Barber R, Flickner MD, Hafner JL, Lee D, Niblack CW, Petkovic D(1995) Automatic and semiautomatic methods for image annotation and retrieval in query by image content(QBIC). In: Proceedings of SPIE in storage and retrieval for image and video databases III, vol 2420. San Diego/La Jolla, pp 24–35

  3. Atnafu S, Chbeir R, Brunie L(2002) Efficient content-based and metadata retrieval in image database. J Univers Comput Sci 8(6):613–622

    Google Scholar 

  4. Bamberger RH, Smith MJT (1992) A filter bank for the directional decomposition of images: theory and design. IEEE Trans Signal Proc 40 (4):882–893

    Article  Google Scholar 

  5. Banerjee M, Kundu MK, Maji P (2009) Content based image retrieval using visually significant point features. Fuzzy Sets and Syst 160(23):3323–3341

    Article  MathSciNet  Google Scholar 

  6. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Proceedings of 9th European conference on computer vision, vol 3951. Austria, pp 404–417

  7. Beecks C, Kirchhoff S, Seidl T (2014) On stability of signature-based similarity measures for content-based image retrieval. Multimed Tools Appl 71(1):349–362

    Article  Google Scholar 

  8. Beecks C, Skopal T, Schöffmann K, Thomas S (2011) Towards large-scale multimedia exploration. In: Proceedings of the 5th international workshop on ranking in databases. Seattle, pp 31–33

  9. Betker AL, Szturm T, Moussavi Z (2003) Application of feedforward backpropagation neural network to center of mass estimation for use in a clinical environment. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society, vol 3, pp 2714–2717

  10. Bosch A, Zisserman A, Munoz X (2007) Image classification using random forests and ferns. In: Proceedings of international conference on computer vision, pp 1–8

  11. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MathSciNet  MATH  Google Scholar 

  12. Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Proceedings of 11th European conference on computer vision, vol 6314. Greece, pp 778–792

  13. Chang S-F, Auffret G, Foote J, Li C-S, Shahraray B, Syeda-Mahmood TF, Zhang H (1999) Multimedia access and retrieval: the state of the art and future directions. In: Proceedings of the 7th ACM international conference on multimedia. Orlando, pp 443–445

  14. Chowdhury M, Das S, Kundu MK (2012) Novel CBIR system based on ripplet transform using interactive neuro-fuzzy technique. Electron Lett Comput Vis Image Anal 11(1):1–13

    Google Scholar 

  15. Ciocca G, Cusano C, Santini S, Schettini R (2011) Halfway through the semantic gap: prosemantic features for image retrieval. Inf Sci 181(22):4943–4958

    Article  Google Scholar 

  16. Csáji BC (2001) Approximation with artificial neural networks. MSc thesis, Eotvös̈ Loránd University, Hungary, pp 1–45

  17. Da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  18. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60

    Article  Google Scholar 

  19. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  MathSciNet  Google Scholar 

  20. Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized gaussian density and kullbackleibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  21. Elsayad I, Martinet J, Urruty T, Djeraba C (2012) Toward a higher-level visual representation for content-based image retrieval. Multimedia Tools Appl 60(2):455–482

    Article  Google Scholar 

  22. Eltoukhy MM, Faye I, Samir BB (2010) A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med 40(4):384–391

    Article  Google Scholar 

  23. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Und 106(1):59–70

    Article  Google Scholar 

  24. Fleites F, Chen S-C, Chatterjee K (2012) A semantic index structure for multimedia retrieval. Int J Semant Comput 6(2):155–178

    Article  MATH  Google Scholar 

  25. Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural Comput 4(1):1–58

    Article  Google Scholar 

  26. Gong Y, Chuan CH, Xiaoyi G (1996) Image indexing and retrieval based on color histograms. Multimedia Tools Appl 2(2):133–156

    Google Scholar 

  27. Griffin G, Holub A, Perona P (2007) Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366, California Institute of Technology

  28. Grgic M, Grgic S, Ghanbari M (2001) A new approach for retrieval of natural images. J Electr Eng 52(5-6):117–124

    Google Scholar 

  29. Haykin S (2009) Networks, neural, river, learning machines, 3rd edn. Upper Saddle, Prentice Hall PTR

  30. Heesch D (2008) A survey of browsing models for content based image retrieval. Multimedia Tools Appl 40(2):261–284

    Article  Google Scholar 

  31. Hernández-Gracidas CA, Sucar LE, Montes-Y-Gómez M (2013) Improving image retrieval by using spatial relations. Multimed Tools Appl 62(2):479–505

    Article  Google Scholar 

  32. Hsu C, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 13(2):425–425

    MathSciNet  Google Scholar 

  33. Huang Y, Zhang J, Huang H, Wang D (2013) Medical image retrieval based on unclean image bags. Multimedia Tools Appl:1–23

  34. Huiskes MJ, Lew MS (2008) The MIR Flickr retrieval evaluation. In: Proceedings of international conference on multimedia information retrieval. ACM, New York

  35. Jiang W, Er G, Dai Q, Gu J (2006) Similarity-based online feature selection in content-based image retrieval. IEEE Trans Image Process 15(3):702–712

    Article  Google Scholar 

  36. Kajiyama T, Satoh S (2010) Construction of image retrieval systems focused on user knowledge interaction. In: Proceedings of the 18th ACM international conference on multimedia. Firenze, pp 1673–1676

  37. Kanizsa G (1972) Organization in vision: essays on gestalt perception. Praeger Publishers Inc

  38. Kankanhalli MS, Mehtre BM, Huang HY(1999) Color and spatial feature for content-based image retrieval. Pattern Recog Lett 20(1):109–118

    Article  MATH  Google Scholar 

  39. Kasapis A (2003) MLPs and pose, expression classification. In: Proceedings of UNiS report, pp 1–87

  40. Kellman PJ, Shipley TF (1991) A theory of visual interpolation in object perception. Cogn Psychol 23(2):141–221

    Article  Google Scholar 

  41. Ko BC, Lee J, Nam JY (2012) Automatic medical image annotation and keyword-based image retrieval using relevance feedback. J Digit Imaging 25(4):454–465

    Article  Google Scholar 

  42. Kobayashi T, Hidaka A, Kurita T (2008) Selection of histograms of oriented gradients features for pedestrian detection. In: Neural information processing. Springer, Berlin, pp 598–607

  43. Kosch H, Maier P (2010) Content-based image retrieval systems - reviewing and benchmarking. J Digit Inf Manag 8(1):54–64

    Google Scholar 

  44. Kovacs L, Utasi A, Sziranyi T (2009) VISRET a content based annotation, retrieval and visualization toolchain. In: Proceedings of the 11th international conference on advanced concepts for intelligent vision systems, vol 5807 (Bordeaux, France). Springer, Berlin, pp 265–276

  45. Kozievitch NP, Almeida J, Torres RDS, Leite NA, Gonalves MA, Murthy U, Fox EA (2011) Towards a formal theory for complex objects and content-based image retrieval. J Inf Data Manag 2(3):321–336

  46. Kundu MK, Chowdhury M, Banerjee M (2011) Interactive image retrieval using M-band wavelet, earth movers distance and fuzzy relevance feedback. Int J Mach Learn Cybernet 3(4):1–12

    Google Scholar 

  47. Lamard M, Quellec G, Bekri L, Cochener B, Roux C, Cazuguel G (2007) Content based image retrieval based on wavelet transform coefficients distribution. In: Proceedings of 29th annual international conference of IEEE engineer in medicine and biology society. Lyon, pp 4532– 4535

  48. Lan J, Guan Y, Tang Z, Zhang J (2013) Texture image retrieval based on nonsubsampled contourlet transform and matrix f-norm. Appl Math Sci 7(53):2613–2619

    Article  Google Scholar 

  49. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of computer vision and pattern recognition, vol 2. New York, pp 2169–2178

  50. Li S, Yang B, Hu J (2011) Performance comparison of different multi-resolution transforms for image fusion. Inf Fusion 12(2):74–84

    Article  Google Scholar 

  51. Li H, Wang X, Tang J, Zhao C (2013) Combining global and local matching of multiple features for precise item image retrieval. Multimedia Syst 19(1):37–49

    Article  Google Scholar 

  52. Liu B, Jiang Y (2013) A multitarget training method for artificial neural network with application to computer-aided diagnosis. Med Phys 40(1):1–9

    MathSciNet  Google Scholar 

  53. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  54. Ma J, Plonka G (2010) The curvelet transform. IEEE Signal Process Mag 27(2):118–133

    Article  Google Scholar 

  55. Mai H, Kim M (2014) Utilizing similarity relationships among existing data for high accuracy processing of content-based image retrieval. Multimedia Tools Appl 72(1):331–360

    Article  Google Scholar 

  56. Maji S, Berg AC, Malik J (2008) Classification using intersection kernel support vector machines is efficient. In: Proceedings of computer vision and pattern recognition. Anchorage, pp 1–8

  57. Mallat S (2008) A wavelet tour of signal processing: the sparse way, 3rd edn. Academic Press

  58. Marques O, Mayron LM, Borba GB, Gamba HR (2007) An attention-driven model for grouping similar images with image retrieval applications. EURASIP. J Appl Signal Process 2007(1):116– 116

    Article  MATH  Google Scholar 

  59. Marques O, Furht B (2002) MUSE: a content-based image search and retrieval system using relevance feedback. Multimedia Tools Appl 17(1):21–50

    Article  Google Scholar 

  60. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24(3):301–312

    Article  Google Scholar 

  61. Mosleh A, Zargari F (2010) A new content based image retrieval method using contourlet transform. J Comput Robot 2(1):45–51

    Google Scholar 

  62. Müller H, Deserno TM (2011) Content-based medical image retrieval. In: Biomedical image processing, biological and medical physics, biomedical engineering. Springer, Berlin, pp 471– 494

  63. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comp Vis 42(3):145–175

    Article  MATH  Google Scholar 

  64. Ou P, Wang H (2009) Prediction of stock market index movement by ten data mining techniques. Mod Appl Sci 3(12):28–42

    Article  MathSciNet  MATH  Google Scholar 

  65. Pele O, Werman M (2009) Fast and robust earth movers distances. In: Proceedings of international conference on computer vision, pp 460–467

  66. Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2012) Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans Image Process 21(4):1613–1623

    Article  MathSciNet  Google Scholar 

  67. Rubner Y, Tomasi C (2001) Perceptual metrics for image database navigation. Kluwer Academic Publishers, Norwell

  68. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of international conference on computer vision. Barcelona, pp 2564–2571

  69. Sandhaus P, Boll S (2011) Semantic analysis and retrieval in personal and social photo collections. Multimedia Tools Appl 51(1):5–33

    Article  Google Scholar 

  70. Shahabi C, Safar M (2007) An experimental study of alternative shape-based image retrieval techniques. Multimedia Tools Appl 32(1):29–48

    Article  Google Scholar 

  71. Shan H, Ma J, Yang H (2009) Comparisons of wavelets, contourlets and curvelets in seismic denoising. J of Appl Geophys 69(2):103–115

    Article  Google Scholar 

  72. Shirdhonkar S, Jacobs D (2008) Approximate earth movers distance in linear time. In: Proceedings of computer vision and pattern recognition, pp 1–8

  73. Sumana IJ, Lu G, Zhang D (2012) Comparison of curvelet and wavelet texture features for content based image retrieval. In: Proceedings of international conference on multimedia and expo, pp 290–295

  74. Sumana I, Islam M, Zhang D, Lu G (2008) Content based image retrieval using curvelet transform. In: Proceedings of the 10th IEEE international workshop on multimedia signal processing. Cairns, pp 11–16

  75. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  MATH  Google Scholar 

  76. Tang F-h, Ip HH-S (2009) Image fusion enhancement of deformable human structures using a two-stage warping-deformable strategy: a content-based image retrieval consideration. Inf Sys Front 11(4):381–389

    Article  Google Scholar 

  77. Tao Y, Grosky WI (2000) Image indexing and retrieval using object-based point feature maps. J Vis Lang Comput 11(3):323–343

    Article  Google Scholar 

  78. Tzikas D, Likas A (2010) An incremental bayesian approach for training multilayer perceptrons. In: Proceedings of the 20th international conference on artificial neural networks, vol 6352. Thessaloniki, pp 87–96

  79. Vetterli M, Kovačevic J (1995) Wavelets and subband coding. Prentice-Hall Inc, Upper Saddle River

  80. Vieux R, Benois-Pineau J, Domenger J-P (2012) Content based image retrieval using bag-of-regions: an efficient approach. In: Proceedings of international conference on multimedia modeling. Klagenfurt, pp 1–11

  81. Vollmer DT, Soule T, Manic M (2010) A distance measure comparison to improve crowding in multi-modal optimization problems. In: Proceedings of 3rd international symposium on resilient control systems, pp 31–36

  82. Wang M, Hua X-S (2011) Active learning in multimedia annotation and retrieval: a survey. ACM Trans Intell Syst Tech 2 (12):10:1–10:21

    MathSciNet  Google Scholar 

  83. Wang X-Y, Zhang B-B, Yang H-Y (2014) Content-based image retrieval by integrating color and texture features. Multimedia Tools Appl 68(3):545–569

    Article  MathSciNet  Google Scholar 

  84. Xiong W, Qiu B, Tian Q, Xu C, Ong SH, Foong KWC, Chevallet J-P (2005) Multi PRE: a novel framework with multiple parallel retrieval engines for content-based image retrieval. In: Proceedings of the 13th ACM international conference on multimedia. Singapore, pp 1023– 1032

  85. Xu J, Yang L, Wu D (2010) Ripplet: a new transform for image processing. J Vis Comun Image Represent 21(7):627–639

    Article  Google Scholar 

  86. Yan R, Huet B, Sukthankar R (2011) Large-scale multimedia retrieval and mining. IEEE MultiMedia 18(1):11–13

    Article  Google Scholar 

  87. Yap K-H, Wu K, Zhu C (2010) Knowledge propagation in collaborative tagging for image retrieval. Sig Proc Syst 59(2):163–175

    Article  Google Scholar 

  88. Zhang H, Zha Z-J, Yang Y, Yan S, Gao Y, Chua T-S (2013) Attribute-augmented semantic hierarchy: towards bridging semantic gap and intention gap in image retrieval. In: Proceedings of the 21st ACM international conference on multimedia. Barcelona, pp 33–42

  89. Zhang J, Wang Y, Zhang Z, Xia C (2011) Comparison of wavelet, gabor and curvelet transform for face recognition. Opt Appl 41(1):183–193

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the anonymous reviewers and the associate editor for their valuable comments. The work is mainly funded by Machine Intelligence Unit, Indian Statistical Institute, Kolkata-108 (Internal Academic Project) for providing facilities to carry out this work. Malay K. Kundu acknowledges the Indian National Academy of Engineering (INAE) for their support through INAE Distinguished Professor fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Chowdhury.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11042-016-4172-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M., Kundu, M.K. Comparative assessment of efficiency for content based image retrieval systems using different wavelet features and pre-classifier. Multimed Tools Appl 74, 11595–11630 (2015). https://doi.org/10.1007/s11042-014-2252-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2252-3

Keywords

Navigation