Skip to main content
Log in

Robust object tracking via local constrained and online weighted

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Accounting for most recent tracking algorithms just only handle one specified challenge, in order to adjust to diverse scenarios in object tracking, we propose a discriminative tracking algorithm based on a collaborative model. In order to account for drastic appearance change, the visual prior have been learned offline by adding the locality regularization term. We transfer the visual prior to represent object and learn a basic discriminative classifier. Next we employ minimal sparse reconstruction error to find the best candidate with the learned classifier. In addition, we derive a parameter update strategy which is based on the candidates’ distribution. With this strategy, the candidates’ weight can be calculated according to the candidates’ distribution online. The tracking is carried out within a Bayesian inference framework with this representation. We use the learned classifier and sparse template to construct the dynamic parameter observation model. Furthermore, the particle filter is used to estimate the tracking result sequentially. Both qualitative and quantitative evaluations on variety of challenging benchmark sequences demonstrate that the proposed tracking algorithm achieves more robust object tracking than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2003) Robust fragments-based tracking usingthe integral histogram. In CVPR 798–805

  2. Avidan S (2001) Support vector tracking. In Proc IEEE Comput Vis Pattern Recognit Conf. Jerusalem, Israel 1: 184–191

  3. S. Avidan (2005) Ensemble tracking. In Proc IEEE Comput Vis Pattern Recognit Conf. Cambridge, MA 2:494–501

  4. Black MJ, Fleet DJ, Yacoob Y (1998) A framework for modeling appearance change in image sequences. Proc. IEEE Int Conf Comput Vis pp. 660–667

  5. Camplani M, Roberto del Blanco C, Salgado L, Jaureguizar F, Garcia N. Multi-sensor background subtraction by fusing multiple region-based probabilistic classifiers”, Pattern Recognition Letters, [pdf] [bibtex] [The final publication is available at http://www.sciencedirect.com]

  6. Camplani M, Salgado L (2014) Background Foreground segmentation with RGB-D Kinect data: an efficient combination of classifiers. Journal of Visual Communication and Image Representation 25(1):122–136

    Article  Google Scholar 

  7. CAVIAR. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

  8. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2010) The PASCAL Vis Object Class Chall 2010 (VOC2010) Results

  9. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. PAMI 25(10):1296–1311

    Article  Google Scholar 

  10. Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. Proc IEEE Conf Comput Vis Pattern Recog

  11. Kwon J, Lee KM (2010) Visual tracking decomposition. Proc IEEE Conf Comput Vis Pattern Recognit 1269–1276

  12. Marco R, Gustavo M, Cristian B (2014) Day and night at the museum: intangible computer interfaces for public exhibitions. Multimedia Tools Appl 69(3):1131–1157

    Article  Google Scholar 

  13. Mei X, Ling H (2009) Robust visual tracking using L1 minimization. Proc IEEE Int Conf Comput Vis 1436–1443

  14. Roccetti M, Marifia G, Semeraro A (2012) Playing into the wild: a gesture-based interface for gaming in pubilc spaces. Journal of Visual Communication and Image Representation, Elsevier 23(3):426–440

    Article  Google Scholar 

  15. Ross D, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. International Journal of Computer Vision 77(1–3):125–141

    Article  Google Scholar 

  16. Wang Q, Chen F, Xu W, Yang M-H (2012) Object tracking via partial least squares analysis. IEEE Trans Image Proc 21(10)

  17. Wang Q, Chen F, Yang J, Xu W, Yang M-H (2012) Transferring visual prior for online object tracking. IEEE Trans Image Proc 21:(7)

  18. Wang S, Lu H, Yang F, Yang M-H (2011) Superpixel tracking. In Proc IEEE Int Conf Comput Vis 1323–1330

  19. Wang D, Lu H, Yang M-H (2013) Online object tracking with sparse prototypes. TIP 22(1):314–325

    MathSciNet  Google Scholar 

  20. Wang D, Lu H, Yang M-H (2013) Least soft-threshold squares tracking. In Proc IEEE Conf Comput Vis Pattern Recog 2371–2738

  21. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Local-constrained linear coding for image classification. In Proc IEEE Conf Comput Vis Pattern Recognit 3360–3367

  22. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In Proc IEEE Conf Comput Vis Pattern Recog 1794–1801

  23. Zhang K, Zhang L, M-H Yang (2010) Real-time compressive tracking. In Proc ECCV 864–877

  24. Zhong W, Lu H, Yang M-H (2012) Robust object tracking via sparsity-based collaborative model. In CVPR 1838–1845

  25. Zhong W, Lu H, Yang M-H (2014) Robust object tracking via sparse collaborative appearance model. In IEEE Transaction on Image Processing 23(5):2356–2368

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, Y., Cao, T., Huang, H. et al. Robust object tracking via local constrained and online weighted. Multimed Tools Appl 75, 6481–6503 (2016). https://doi.org/10.1007/s11042-015-2584-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2584-7

Keywords

Navigation