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Abstract Recently, two piecewise smooth models L0smoothing and relative total variation
(RTV) have been proposed for feature/structure-preserving filtering. One is very efficient for
tackling image with little texture patterns and the other has appearance performance on image
with abundant uniform textural details. In this work, we present a general relative total
variation (GRTV) method, which generalizes the advantages of both approaches. The effi-
ciency of RTV depends on the defined windowed total variation (WTV) and windowed
inherent variation (WIV), which focus on edge enhancing and texture suppressing respectively.
The key innovations of the presented GRTV method are to extend the norm of WTV in RTV
from 1 to [0, 1] and set the norm of WIV inversely proportional to the norm of WTV. These
modifications substantially improve the structure extraction ability of RTV. The presented
GRTValso improves the edge-boundary enhancing ability of L0smoothing and further enables
it to deal with images containing complex textural details and noises. Furthermore, the L2-
norm data fidelity term replaced by L1-norm is discussed. Experimental results demonstrate
that the proposed method presents better performance as the state-of-the-art methods do.
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1 Introduction

Many problems in computer vision and computer graphics involve estimating some spatially-
varying image content from noisy raw data. One important requirement of such estimation is
the feature-preserving filtering, which became a fundamental tool in many applications.
Specifically, the feature-preserving filtering decompose a given image into structure and detail
components by smoothing the image, simultaneously preserving or even enhancing image
edges. Unfortunately, feature-preserving filtering is inherently challenging, because it is
difficult to distinguish features from noise. There exist some different feature-preserving
filtering methods, which can be roughly classified into two categories, i.e., spatial filters [6,
9, 13, 18, 25] and variational models [10, 23, 27, 28]. They differ from each other in how they
define edges and how this prior information guides smoothing.

Anisotropic diffusion model [18] falls into the category of spatial filters. It employs a partial
differential equation (PDE) based formulation in which pixel-wise spatially-varying diffusiv-
ities are estimated from image gradients. The gradient of the filtering image guides the
diffusion process such that to avoid smoothing edges. Bilateral Filtering (BF) [9, 25] is another
widely used model for removing noise from images while simultaneously performing detail
flattening and edge preservation. It averages the nearby pixels by calculating weights from
spatial and range domain [25], in favor of smoothing low-contrast regions while preserving
high-contrast edges. Due to its simplicity and effectiveness, BF has been successfully applied
to several computational photography applications [11, 26]. In [6], Buades et al. proposed a
relatively simple technique to decompose an image into structure and oscillatory texture parts
by using a nonlinear low pass-high pass filter pair. It is used to compute a local total variation
of the image around a pixel and subsequently perform the decomposition. By considering the
local linear model between the guidance image and the filtering output at a small neighbor
window, a spatially guided filter (GF) was proposed in [13].

Variational models often follow the energy minimization framework comprising a data
fitting term and a smooth penalty term [10, 23, 27, 28]. The data term measures the
disagreement between the filtered signal s and the original signal f, while the smooth term
measures the extent to which the filtered signal is not piecewise smooth. i.e.,

s ¼ argmin
s

G f ; sð Þ þ λJ sð Þf g ð1Þ

where λ is a non-negative parameter controlling the weight of the smooth term. The design of
the data term G(f,s) is usually straightforward. For instance, the squared L2 distance between
the filtered signal and the original signal ‖f−s‖22 is often used. The choice of the smooth term
J(s) is a critical issue. A representative work is the total variation [23], which uses L1-norm
based regularization constraints to penalize large gradient magnitudes. In its original formu-
lation, this model provides fairly good separations for structure from texture. Some studies
extended the standard TV formulation with different norms for both regularization and data
fidelity terms, and demonstrated that more robust norms could improve image decomposition.
In [10], Farbman et al. proposed a robust method with the weighted least square (WLS)
measure. The success of the WLS optimization attributes in part to the Lp norm in the Iterative
Reweighed Least Square (IRLS) framework. Xu et al. [27] proposed an L0 smoothing method,
using L0 term instead of L1 term, to directly measure the gradient sparsity in the context of
image smoothing, and achieved some promising results. Later, they proposed a special method
RTV [28] dealing with textured image. The efficiency of RTV depends on the defined
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windowed total variation (WTV) and windowed inherent variation (WIV) involving spatial
information. Recently, some improved algorithms for L0smmothing method were proposed, in
ref. [24] Shen et al. presented a L0 smoothing-L1 method, where a L1-defility term instead of
L2-norm was used to deal with large noise. In ref. [7], rather than using L0-L2 iteration
algorithm to solve the model in ref. [27], Cheng et al. developed the L0smoothing_FCD
(Fused coordinate descent) algorithm, which iteratively repeated coordinate descent step and
fusion step to approximately solve the model.

Contribution Although most of the existing image smoothing models aim at extracting
structure from noise with edge-preserving capabilities, they have their intrinsic strengths and
short-comings. For instance, BF, WLS and L0smoothing work poor for tackling the image
with non-uniform texture details, while RTV may smooth the edge when works on image
containing number of cartoon patterns. In the present work, an effective general relative total
variation (GRTV) method which absorbs the advantages of both spatial filters and variational
models is proposed. The key innovations of our method are to extend the norm of WTV in
RTV from 1 to [0, 1] and set the norm of WIV inversely proportional to the norm of WTV.
These modifications substantially improve the structure extraction ability of RTV. The pre-
sented GRTValso improves the edge-boundary enhancing ability of L0smoothing and further
enables it to deal with image containing complex textural details and noises. Furthermore, the
L2-data fidelity term replaced by L1-data term is discussed in this paper. Experimental results
demonstrate that the proposed method presents better performance as the state-of-the-art
methods do.

The rest of this study is organized as follows. In Section 2, we briefly review the
L0smoothing and RTV filter. In Section 3, a general model containing non-convex norm is
proposed to alleviate the drawback of L0smoothing and RTV model. Numerical experiments
will be provided in Section 4. Finally, concluding remarks and perspectives are sketched in
Section 5.

2 Review of L0smoothing and RTV models

In this section, two image smoothing techniques L0smoothing and RTV, one focusing on the
sparse and robust norm and the other emphasizing the spatially-varying total variation
measure, will be briefly reviewed. The corresponding mathematical formulation and model
will be constructed. Subsequently their strengths and drawbacks will be discussed in detail.

2.1 L0smoothing model

In ref. [27], Xu et al. proposed an image smoothing method via L0 gradient minimization.
Assuming that ∇s denotes the gradients of s, the energy function of the L0smoothing model is
defined as follows:

s ¼ argmin
s

1

2
f −sk k22 þ λ ∇sj j0

� �
ð2Þ

where the data term is the squared L2 distance between f and s, the smooth term is the L0 norm
of ∇s. The L0 norm of a vector is the number of non-zero value, which directly measures the
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sparsity. Compared to the lp(0<p<1) norm regularization such as WLS filter [10],
L0smoothing can remove low-amplitude structures and globally preserve and enhance
salient edges, even if they are boundaries of very narrow objects. One main drawback
introduced by L0smoothing is that, like other previously proposed edge-preserving
smoothing approaches [10, 18, 23, 25], it mainly employs differences in the bright-
ness values or gradient magnitudes as the main cues for edge indicator at an image
pixel, and makes use of this information to guide the smoothing process. Therefore,
the local contrast-based definition of edges might fail to capture high-frequency
components that are related to fine image details or textures. It suggests that
L0smoothing cannot fully separate textured regions from the main structures as they
consider them as part of the structure to be retained during computations.

2.2 RTV model

In ref. [28], a structure extraction method from textured image was developed by
employing relative total variation (RTV). For the purpose of properly removing
texture, the proposed RTV model does not assume the type of textures in advance,
instead it introduces a novel map of windowed inherent variation (WIV). The WIV
map in a region that only contains texture is generally smaller than that in a region
also including structural edges. Applying WIV map as a weight of TV model in the
vertical and horizontal directions yields adaptive edge preservation and texture remov-
al. Mathematically, the objective function can be expressed as:

s ¼ argmin
s

1

2
f −sk k22 þ λ

X
i

Dxs ið Þ
Lxs ið Þ þ ε

þ Dys ið Þ
Lys ið Þ þ ε

� �( )
ð3Þ

where Dxs ið Þ ¼ ∑
j∈R ið Þ

gi; j ∂xsð Þi
�� ��. Lxs ið Þ ¼ ∑

j∈R ið Þ
gi; j ∂xsð Þi
�� �� are the weights and gi,j is a

Gaussian weighting function with standard deviation σ controlling the spatial scale of
the window. Both i and j index the 2D pixels, x and y are pixel coordinates. The
second term in objective function (3) enforces the structure part to be sparse in the
gradient domain, where ε is used to prevent numerical un-stability. RTV is modeled as
variational formulation and its texture suppression weight is spatial vary dependent.
However, although having good performance in dealing with highly textured images,
it may overly smooth natural images by blurring major edge structures.

3 Generalized RTV (GRTV) method

As discussed in Section 2, the RTV has powerful ability to decompose image with
irregular texture. However, it cannot separate the image component completely.
Particularly, it may fail to enhance the edge and remove details simultaneously. On
the other hand, the edge-aware filtering L0smoothing works perfect to sharpen or
preserve the salient edges, although it fails to eliminate the large textures. Therefore,
it is reasonable to design a model that inherits the strengths of the above approaches,
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such as to achieve the purpose of jointly texture-smoothing and edge-preserving. One
possible objective function we choose is expressed as follow:

s ¼ argmin
s

1

q
f −sk kqq þ λ

X
i

Dp
xs ið Þ

L2−px s ið Þ þ ε
þ Dp

ys ið Þ
L2−py s ið Þ þ ε

" #( )
ð4Þ

Besides of the factor λ, the proposed model GRTV contains two another parameters: p (0<
p≤1) promoting the sparsity of gradient and texture patterns, meanwhile q (1≤p≤2) enforcing
the degree of data consistency. Intuitively, on one hand, the operator Dy

p with 0<p<1 has
bigger edge preserving ability than that with p=1. On the other hand, Lx

2−p with 0<p<1 will
pose better texture-suppressing capability than that with p=1. In the following content, we will
discuss the solver of this general model in the circumstance of q=2 and q=1 respectively. The
relation and difference between the proposed model and the existing state-of-the-art algorithms
will be revealed finally.

3.1 GRTV_L2: Solving model (4) with q=2

In the case of q=2, the objective function of Eq. (4) can be rewritten as:

s ¼ argmin
s

1

2
f −sk k22 þ λ

X
i

Dp
xs ið Þ

L2−px s ið Þ þ ε
þ Dp

ys ið Þ
L2−py s ið Þ þ ε

" #( )
ð5Þ

where Dp
xs ið Þ ¼ ∑

j∈R ið Þ
gi; j ∂xsð Þ j
��� ���p and Lpxs ið Þ ¼ ∑

j∈R ið Þ
gi; j ∂xsð Þ j
��� ���p are the weights.

X
i

Dp
xs ið Þ

L2−px s ið Þ þ ε
¼
X

i

X
j∈R ið Þ

gi; jX
j∈R ið Þ

gi; j ∂xsð Þ j
��� ���2−p þ ε

∂xsð Þi
�� ��p

≈
X

i

X
j∈R ið Þ

gi; j
L2−px s ið Þ þ ε

1

∂xsð Þi
�� ��2−p þ ε

∂xsð Þ2i

¼
X

i

u2−px;i w
2−p
x;i ∂xsð Þ2i

ð6Þ

The second line in Eq. (6) is approximated by the Iteratively Reweighted Norm (IRN)
approach proposed by Rodriguez et.al [21] and [20], which is closely related to the Iteratively
Reweighted Least Squares (IRLS) method [12] and [19] and widely used in compressed
sensing and image processing fields [15, 21]. It has been proven that IRN is one kind of
Majorization-Minimization (MM) method [21], which involves good convergence property.

u2−px;i ¼
X
j∈R ið Þ

gi; j
L2−px s ið Þ þ ε

¼ Gσ*
1

Gσ*∂xsj j2−p þ ε

 !
i

ð7Þ
and

w2−p
x;i ¼ 1

∂xsð Þi
�� ��2−p þ εs

ð8Þ

where Gσ is a Gaussian filter with standard deviation σ and εs is a small positive number to avoid
division by zero. The division in Eq. (7) is point-wise and * is the convolution operator. Eq. (7)
indicates that weight ux,i

2−p at pixel point i incorporates neighboring gradient information in an
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isotropic spatial filter manner. Meanwhile, weightwx,i
2−p in Eq. (8) is only related to the pixel-wise

gradient. The weights (7) and (8) pose the neighboring and the pixel constraint for the same point
i. The penalty in the y-directional dimension is the same as that in x-directional dimension.

In summary, Eq. (5) can be written in a matrix form as follow:

vs ¼ argmin
vs

v f −vs
� �T

v f −vs
� �þ λ vs

TCx
TUxWxCxvs þ vs

TCy
TUyWyCyvs

� �n
ð9Þ

where vs and vf are the vector representation of s and f respectively. Cx and Cy are the Toeplitz
matrices from the discrete gradient operators with forward difference. Ux, Wx, Uy and Wy are
diagonal matrices whose elements are defined in Eq. (7)(8). Similar to RTV, Eq. (5) is solved
by a reweighted strategy, i.e., update the block variables Ux, Wx, Uy and Wy as a function of vs
calculated from the previous iteration and then update vs by minimizing Eq. (9) with the last
values of Ux, Wx, Uy and Wy. Practically speaking, using Lk=Cx

TUx
kWx

kCx+Cy
TUy

kWy
kCy, the

minimization of Eq. (5) is given by

1þ λLk
� �

vkþ1
s ¼ v f ð10Þ

Since (1+λLk) is a symmetric positive definite Laplacian matrix, efficient solvers are
available for it. The whole optimization process is summarized as follows:

Algorithm GRTV_L2
1: For k=0 to K−1 do
2: update the weights according to Eqs. (7)(8)
3: update vs

k+1 according to Eq. (10)
4: End (For)
RTV is a special case of GRTV_L2 with p=1. The extended range with 0<p<1 will

substantially improve the geometry and texture separation capility. An intuitive demonstration
is displayed in Fig. 1. As the parameter p decreases, the weights ux,i

2− p and wx,i
2−p of texture and

edge differ more. Figure 1b and c correspond to the case of p=1 and p=0.5 respectively. It can
be observed that both filters smooth small fluctuations and while preserving edges.
Furthermore, as illustrated in Fig. 1d and e), the weights ux,i

2− p+uy,i
2−p and wx,i

2−p+wy,i
2−p with

p=0.5 are more stiffness than those of with p=1.
We can consider the relationship of L0smoothing, RTVand GRTV_L2 in the globally and

locally respects. L0smoothing uses L0 gradient minimization, which can globally control how
many non-zero gradients are resulted in to approximate prominent structure in a sparsity-control
manner. It does not depend on local features, but instead globally locates important edges. RTV
mainly emphasizes on the texture-weights, which is locally defined. Our presented method
GRTV_L2 falls in between, and inherits the advantages of both algorithms in the approximate
strategy. From the viewpoint of parsimony-promoting measure, GRTV_L2 is closely related to
L0smoothing method, it differs L0smoothing mainly from the additional weight wx,i

2−p. One
example depicted in Fig. 2 reveals the similarities and differences between their results. The test
image shown in Fig. 2a contains textural grasses and slightly smooth clouds with small
magnitude. The result of RTV in Fig. 2c cannot simultaneously maintain the lines on the girl’s
skirt and smooth the grasses. As expected, our GRTV_L2 with p=0.5 largely improves this
simplification ability. For this test image, the behavior of GRTV_L2 is very near to that of
L0smoothing by specifying λ=0.0004,σ=1. Seen from Fig. 2d, it can be found that the
boundary of cloud obtained by our method is more rich and clear, consisting of piecewise
constant intensities. Besides, by tuning parameters λ and σ, our method yields meaningful
decomposition as depicted in Fig. 2e and f.
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3.2 GRTV_L1: Solving model (4) with q=1

In this subsection, the replacement of the L2-norm by the L1-norm as a fidelity measure
w.r.t. the given image f will be considered. This modification may induce some important
consequences. For example, the L1-norm prefers to better outlier in-sensivity and some

(a) Input image (b) RTV (c) GRTV_L2

(d) weights 2 2

, ,

− −+p p
x i y iu u  in (b) and (c) (e)  weights 2 2

, ,

− −+p p
x i y iw w  in (b) and (c)   

Fig. 1 Demonstration of the weights ux,i
2−p+uy,i

2−p and wx,i
2−p+wy,i

2−p vs p -value

0.015, 1λ σ= = ) 

0.0004, 1λ σ= = 0.0008, 0.1λ σ= =

(a) Input image   (b) L0smoothing (c) RTV (

(d) GRTV_L2 ( )   (e) GRTV_L2 ( ) (f) GRTV_L2 ( 0.00002, 4λ σ= = )  

Fig. 2 Smoothing results produced by L0smoothing, RTV and GRTV
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geometric properties, as stated in many references [1, 2, 16]. The objective function can be
expressed as:

s ¼ argmin
s

f −sk k1 þ λ
X

i

Dp
xs ið Þ

L2−px s ið Þ þ ε
þ Dp

ys ið Þ
L2−py s ið Þ þ ε

" #( )
ð11Þ

Similar to the technique used for dealing with windowed total variation (WTV), with the
relation

f i−sik k1≈
1

f i−sik k1 þ ε
f i−sik k22 ð12Þ

, Eq. (11) can be written in a matrix form as follows:

vs ¼ argmin
vs

v f −vs
� �T

R vf −vs
� �þ λ vs

TCx
TUxWxCxvs þ vs

TCy
TUyWyCyvs

� �n
ð13Þ

where R is a diagonal matrix, whose diagonal values are R i; i½ � ¼ 1
f i−sik k 1 þ ε. Accordingly,

the update of vs can be achieved by

Rþ λLk
� �

vkþ1
s ¼ v f ð14Þ

Similar to the Eq. (10), (R+λLk) is also a symmetric positive definite Laplacian matrix and
the whole optimization process is summarized as follows:

Algorithm GRTV_L1
1: For k=0 to K−1 do
2: update the weights according to Eqs. (6)(7)
3: update vs

k+1 according to Eq. (12)
4: End (For)
Figure 3 shows the advantage of modifying L2 to L1 data-fidelity. As can be

observed, both GRTV_L2 and GRTV_L1 with p=0.5 improve the visual perception
of the input image than that of RTV. Besides, the introduction of L1 data-fidelity
lowers the sensitivity of outliers. Furthermore, the L1-data fidelity term can be
generalized to Lq-data term. The numerical modification is straightforward, as we
have done in Eq. (6) and refs. [15, 21]. We do not discuss them due to the limit of
paper length.

3.3 Iterative Reweighed Least Square (IRLS) framework and the computation cost

From the view of numerical optimization, both RTV and the developed GRTV fall
into the category of IRLS framework. They are closely related to the WLS filter,
which can be viewed as a single iteration of the IRLS framework. In WLS, the
weight is the 1

∂xlog sð Þð Þij j2−pþε
(0≤p≤0.8), which is a modification of 1

∂xsð Þij j2−pþε
. Although

the convergence of the proposed GRTV may not be proved strictly as in ref. [21], our
numerical experiments show good convergence behaviors. Figure 4 shows one exam-
ple. It can be observed from Fig. 4a that the objective function values change slightly
after 3 iterations. Figure 4b displays the intermediate structure images obtained at the
1-th, 2-th, and 4-th iteration, where we can find the proposed method quickly updates
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the saliency sharpened image in iterations. It indicates the effectiveness of the IRLS
strategy adopted by our method.

The computation cost of GRTV is the same as that of RTV. i.e., At each iteration,
the computational cost of (6) and (7) is linear with respect to problem size with
O(σN) by taking advantage of the nice separation property of Gaussian kernel, where
N is the total number of pixels in an image. As stated in ref. [28], the step of
calculating vs is to solve a linear system with a five-point spatially inhomogeneous
sparse Laplacian matrix. Fast solvers such as the multi-resolution preconditioned
conjugate gradient (PCG) can reach O(N) complexity. In all the experiments of this
article, it usually takes 3 s to process an 800x600 color image on an Intel
Corei3CPU@2.93G with our matlab implementation.

(a) Input image   (b)  RTV ( 0.015, 6λ σ= = ) 

0.0003, 6λ σ= =(c) GRTV_L2 ( )   (d)  GRTV_L1 ( 0.001, 6λ σ= = )  

Fig. 3 Smoothing results on the Gypsy girl mosaic image

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

9

Iteration number

Function value

(a) (b)

Fig. 4 The plot of function values vs iteration number, and the intermediate structure images at different
iterations. a Objective value evolution. b The intimidate structure image obtained by the algorithm at the 1-th,
2-th, and 4-th iteration
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4 Experimental results

In this section, at first we investigate the performance of the proposed algorithm by varying its
parameter, then our method is compared with some existing edge-aware image smoothing
methods, including BF [6], WLS [28] and L0smoothing [25]. The parameters of these methods
are hand-tuned carefully to achieve the best performance. Finally, some potential applications
are briefly exhibited.

4.1 Performance on varying values of p

Parameter p controls the degree of sparse norm. The effect of varying parameters is demonstrated
in Fig. 5. Seen from Fig. 5, it can be found from the second row that GRTV_L2 changes the image
more sharpen with smaller p -value. In the third row, the results of GRTV_L1 with different p -
value also reflect this tendency, while they better preserve the shade and contrast information than
these corresponding results obtained by GRTV_L2. By the way, although L0smoothing method
shown in Fig. 5c uses the penalty with p=0 norm, its smoothing result may not provide
impressive visual effect due to the lack of adaptive weighted fidelity term. According to the
Figure, it is expected that the user can obtain the specific effect by tuning parameter p.

4.2 Comparison with state-of-the-art methods on cartoon images

Since L0smoothing targets globally preserving salient structures, even if they are small in
resolution, it fails to remove the noise with large magnitude. One example is shown in Fig. 6.

(a) Input image   (b) WLS (c) L0smoothing

(d) GRTV_L2 (p=1) (e) GRTV_L2 (p=0.5) (f) GRTV_L2 (p=0.1)

(g) GRTV_L1 (p=1) (h) GRTV_L1 (p=0.5) (i) GRTV_L1 (p=0.1)

Fig. 5 Effect of varying parameters. Smaller p-values give more prominent edges sharpening results
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As can be observed in Fig. 6b, L0smoothing produces speckle-like artifacts. Moreover,
although L0smoothing_FCD improved the noise insensitivity ability than that of
L0smoothing-L1 and L0smoothing_FCD, it still retained some points near the edge, distorting
the edge boundary. The result of RTV is slightly blurred. Our method performs the best to
remove high frequency noise while preserving major edges.

The flower depicted in Fig. 7a contains smoothly branches and leaves and flower bud with
small magnitude. The result of L0smoothing, RTV and L0smoothing_L1 cannot balance the
detail smoothing and edge enhancing. Due to L0smoothing_FCD use the fuse technique such
that a group of variables together rather than a single variable to be updated, it may cause over-
fitting. On the other hand, our method obtains visually satisfied results; the GRTV method can
better preserve the contrast around edges than the original RTV filter.

We applied four smoothing methods WLS, L0smoothing, RTV and GRTV to the image
depicted in Fig. 8a. Figure 8 exhibits the difference among these methods clearly. In this
example, as can be observed from Fig. 8b and c, WLS and L0smoothing algorithms cannot
properly balance the conflicting goals of noise suppression and shape preservation. On the
contrary, we can say that RTV and our GRTV framework with p=0.5 perform similarly.
However, our method produces better result in the middle and lower right part in the cartoon
image.

4.3 Comparison with state-of-the-art methods on textured images

In this subsection, some examples with ample non-uniform and anisotropic textures are shown
to exhibit the flexibility of our method. It is worth noting that the TV model, BF and WLS
filters were used in natural image smoothing and may not have effective terms to tackle
textures. L0smoothing also has limitation in dealing with the Bstructure+texture^ images, since
it usually cannot suppress the texture component. Figure 9a shows the image BBishapur_zan^,
in which the main structures are surrounded by the background formed by many tiles with

L1 (a) Original (b) L0smoothing (c) L0smoothing-

(d) L0smoothing_FCD (e) RTV (f) GRTV_L2 (p=0.5)

Fig. 6 Comparison with state-of-the-art methods on image created by Farbman et al
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salient but fine boundaries. From Fig. 9b and c, it can be observed that our method in the case of
L1 data-fidelity can attain satisfied results. Besides, compared the results depicted in Fig. 1, it
indicates that the L1-norm better preserves the contrast than the L2-norm. By the way, although
tuning the regularization parameter as shown in Fig. 9d, e and f, RTV cannot well enhance the
result meanwhile eliminating the outliers and irregular patterns.

The input image in Fig. 10 is an image contains persons with different shape. Since each
people embedded with a different color, their texture measurements differ from each other much
although they share the same background texture pattern, which makes the decomposition task
very difficult. In Fig. 10b, the RTVresult in the second people still has some artifacts. In Fig. 10c,
GRTV_L2 with p=0.5 attains a more visual pleasure result, although it remains some outliers
with strong white tone. The GRTV_L1 result with p=0.5 in Fig. 10d attains the best estimate.

Figure 11a shows an input image, where the texture is highly non-uniform and anisotropic.
It can be observed in Fig. 11a, b, c and d) that these edge-difference guided approaches (e.g.,
BF, WLS and L0smoothing) do not have effective terms to deal with this texture-containing
image. Results from RTV method is presented in Fig. 11e. Although RTV makes use of local
signed gradients and the relative total variation (RTV) exhibits special properties, it fails to
preserve some fine structures and blurs main edges compared to our method shown in Fig. 11f.
Additionally, the decomposition of GRTV_L2 preserves the contrast between the girl and the
background better. In summary, our edge-preserving texture-smoothing filtering method
improves the visibility of input image than other algorithms. It can effectively achieve strong
texture smoothing while keeping edges sharp. Some more comparisons with RTVon the same
data from ref. [28] are shown in Fig. 12.

(a) Original (b) L0smoothing (c) L0smoothing_L1

(d) L0smoothing_FCD (e) RTV (f) GRTV_L2 (p=0.5) 

Fig. 7 Smoothing comparison with advanced method of L0smoothing, RTV and GRTV
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Our method can enhance the edge boundary by increasing steepness of transition, specif-
ically as displayed in Figs. 2, 9 and 11. This property may in favor of the image segmentation
such as the variational active contour/snake models [4, 17], there our developed weight can be
incorporated to their weighted TV-norm for better segmentation.

As stated in ref. [27], although L0smoothing can not to efficiently tackle texture images, it
can produce novel effects by firstly applying the local filtering BF and then the global filter
L0smoothing. Figure 13 shows the example reproduced in ref. [27], there BF yields over-
blurrng result and L0smoothing remains fluff textures, combining them in consecutive way
yields an image with sharpen prominent edges. In Fig. 13d RTV gives a slightly blurred image.
Finally, we can observe that our GRTV_L2 result with p=0.5 in Fig. 13f sharpen the large-
scale salient edges more than that of RTV.

4.4 Some applications

Edge extraction from images is usually the basic preprocessor to natural image editing
[3] and high-level structure inference. High quality results that are continuous, accu-
rate, and thin are generally very difficult to produce due to high susceptibility of edge

(a) Reference image   (b) WLS (c) L0smoothing

(d)  RTV (e)  GRTV_L2  (f)  GRTV_L1

Fig. 8 Smoothing comparison with state-of-the-art methods
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0.01λ = 0.015λ =

(a) Input image (b) GRTV_L1 (p=1) (c) GRTV_L1 (p=0.5)

(d) RTV ( ) (e) RTV ( ) (f) RTV ( 0.03λ = ) 

Fig. 9 Comparison with RTVon image BBishapur_zan^

0.006, 3λ σ= = ) 

0.0003, 3λ σ= =

(a) Input image (b) RTV (

(c) GRTV_L2 ( ) (d) GRTV_L1 ( 0.0001, 3λ σ= = )  

Fig. 10 Structure extraction result comparison with RTV and GRTV
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detectors to complex structures and inevitable noise. Our method is able to suppress
low-amplitude details, which remarkably stabilizes the extraction process. One exam-
ple is shown in Fig. 14, the boundaries of the original ramp in Fig. 14a are not very
sharp with overall small-magnitude gradients and it is difficult to distinguishable them
from low-contrast details around. The results of L0smoothing and our method with
p=0.3 are shown in Fig. 14b and c. Their corresponding gradient magnitude images
are shown in (d)(e)(f) by linearly enhanced for visualization. As can be observed, our
result is more faithful and the boundary is clearer.

We can see that our model, using a p-norm contrast function, gives us a better
quality result because the edge function better preserves the geometry of the
original features such as the corners and the largest disk. As can be seen from
Fig. 15b and c), our methods GRTV_L2 with p=0.5 and p=0.1 lower the ampli-
tudes of noise-like structures more than those of long coherent edges, meanwhile
they globally sharpen prominent edges. Typically, result in Fig. 15c only contains
large-scale salient edges, profiting main structure extraction and understanding. The
GRTV_L1 results with p=0.5 and p=0.1 in Fig. 15e and f also display the similar
estimates. The results by using our methods indicate that lower p-value has better
capability on contrast- preserving.

(a) Input image (b) BF (c) WLS

(d) L0smoothing (e) RTV (f) GRTV_L2 (p=0.5)

Fig. 11 Structure extraction result comparison with state-of-the-art methods
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When cartoon-like images such as the clip-art were heavily compressed it causes
severe compression artifacts. In ref. [27], Xu et al. found that the general denoising

(a) Input image (b) RTV (b) GRTV_L2 (p=0.5) (f) GRTV_L1 (p=0.5)

Fig. 12 Structure extraction result comparison with state-of-the-art methods

othing 

0.0051, 7λ σ= =

(a) input image  (b)  BF (c) L0smo

(d) RTV ( ) (e)  BF+L0smoothing (f) GRTV_L2 ( 0.0001, 7λ σ= = )  

Fig. 13 Comparison with combined BF and L0smoothing
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approaches even with the state-of-the-art BM3D [8] cannot achieve satisfied output
and their developed method L0smoothing gives appear performance. In fact, as can be
expected, this artifact that strongly correlated with edges can be viewed as a special
non-uniform texture and hence can be properly coped by our texture-smoothing and
edge-preserving filters. One example is shown in Fig. 16, where the input image
contains acute edges. As indicated, GRTV outperforms RTV mainly that it better
lowers the amplitudes of noise-like structures on the animal’s claws.

Mosaics images, paintings, and drawings sometimes cannot be directly used in
image composition because the source and target textures are incompatible. Our

(a) Input image  (b) L0smoothing (c) GRTV_L2

(d) Gradient map of (a) (e) Gradient map of (b) (f) Gradient map of (c) 

Fig. 14 Edge enhancement and extraction. Our result is more faithful and the boundary is clearer

0.0001, 4λ σ= = 0.00002, 2.5λ σ= = ) 

0.007, 2λ σ= = 0.001, 4λ σ= =

(a) Input image (b) GRTV_L2 ( ) (c) GRTV_L2 (

(d) RTV ( ) (e) GRTV_L1 ( ) (f) GRTV_L1 ( 0.0001, 2.5λ σ= = )  

Fig. 15 Image simplification example
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proposed GRTV method can largely attenuate this shortcoming by first smoothing the
original input with our structure-preserving filter and then performing composition
between the resulting base layer with the another image. As shown in Fig. 17, the
well smoothed image by GRTV enables the composed image in Fig. 17d to give more
visual pleasure than that in Fig. 17c.

(a) Input image (b) L0smoothing (c) GRTV_L2 (p=0.3)

Fig. 16 Clip-art compression artifact removal example

(a) Input image (b) GRTV (p=0.5)

(c) (d)

Fig. 17 Image composition example. a Input. b Structure image by GRTV_L2. c d Composed images obtained
with the original and the structure images (b)

792 Multimed Tools Appl (2016) 75:7909–79306



5 Conclusion and discussion

In this paper, a model can effectively eliminate texture meanwhile preserving/
enhancing structure was proposed. The image smoothing results were improved by
assigning with different norms for the weights, regularization and data fidelity terms.
With the aid of Iteratively Reweighted Least Squares (IRLS) technique, the original
non-linear problem was transformed to the alterative iterations of weights updating
and the least square solver that are much easier to solve quickly. Two algorithms
GRTV_L2 and GRTV_L1 were developed. Experimental results demonstrate the
effectiveness and robustness of the proposed method on both cartoon-like images
and texture images. Generally, empirical experiments show that GRTV_L1 better
preserves the global contrast of the input image and lowering the sensitivity of
outliers than GRTV_L2.

The proposed model can be applied to a large range of image patterns, and thus
posses the advantages such as contrast-preserving, edge-preserving/sharpening and
data-driven scale selection. Additionally, the proposed model allows a high level of
randomness due to the nonlinear formulation. Compared to the L0smoothing that
contains only one parameter and RTV that contains two parameters, a drawback of
the proposed GRTV is that it possesses three parameters (i.e., λ, p and σ).
Nevertheless, as demonstrated in subsection 4.1, GRTV makes the input image more
sharpen with smaller p value. Additionally the role of λ and σ in GRTV is the same
as that in RTV. Therefore, the user can obtain the specific effect by tuning these
parameters.

Inspired by the fact that extending the concept of neighborhood in a non-local way to
potentially include more pixels such that may in favor of smoothing [5], smoothing at non-
local/semi-local regions has received a lot of attention and some schemes were proposed
recently [14, 22, 29]. The nonlocal extension of total variation framework will be further
considered in the forthcoming study.
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