Skip to main content
Log in

A novel hybrid approach for salient object detection using local and global saliency in frequency domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a fast and novel biologically plausible frequency domain approach to detect salient object which incorporates both local and global salient features. The proposed approach involves three phases. In the first phase, locally salient features are obtained as suggested in the research work of Bian and Zhang. Globally salient features are computed in the second phase using fast Walsh-Hadamard transform since it is computationally more efficient and faster than fast Fourier transform. Finally the saliency map is generated in terms of linear weighted combination of local and global saliency maps where the weights are determined using entropy measure. The performance is evaluated both qualitatively and quantitatively on two publicly available datasets and one new dataset derived from a publicly available dataset. Experiments show that the proposed model significantly outperforms other relevant existing state-of-the-art methods in both spatial and frequency domain. The proposed method is also computationally less expensive to detect salient object accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.research.microsoft.com/enus/um/people/jiansun/salientobject/salient_object.htm

  2. http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/GroundTruth/binarymasks.zip

  3. E-mail at “rinki.arya89 @ gmail.com or navjot.singh.09@gmail.com”

References

  1. Achanta R, Hemamiz S, Estraday F, Susstrunk S (2009) Frequency-tuned salient region detection. IEEE Conf Comput Vis Pattern Recognit (CVPR) 1597–1604

  2. Achanta R, Susstrunk S (2010) Saliency detection using maximum symmetric surround. IEEE Int Conf Image Process (ICIP) 2653–2656

  3. Amit Y (2002) 2D Target detection and recognition, models, algorithms and networks. MIT Press, Cambridge, MA

    Google Scholar 

  4. Bian P, Zhang LM (2010) Visual saliency: a biologically plausible contourlet-like frequency domain approach. Cogn Neurodyn 4(3):189–198

    Article  Google Scholar 

  5. Borji A, Itti L (2012) Exploiting local and global patch rarities for saliency detection. IEEE Conf Comput Vis Pattern Recognit (CVPR) 478–485

  6. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  MathSciNet  Google Scholar 

  7. Borji A, Sihite DN, Itti L (2012) Salient object detection: a benchmark. Proc Eur Conf Comput Vis Lecture Notes Comput Sci 414–429

  8. Borji A, Sihite DN, Itti L (2012) Salient object detection: a benchmark. Eur Conf Comput Vis 414–429

  9. Bruce NDB, Tsotsos JK (2006) Saliency based on information maximization. Adv Neural Inf Process Syst 18:155–162

    Google Scholar 

  10. Chen L, Xie X, Fan X, Ma W, Shang H, Zhou H (2002) A visual attention model for adapting images on small displays. Technical Report, Microsoft Research Redmond

  11. Cheng M-M, Mitra NJ, Huang X, Torr PHS, Hu S-M (2011) Salient object detection and segmentation. IEEE Trans Pattern Anal Mach Intell. Technical Report, TPAMI-2011-10-0753

  12. Cheung Y, Peng Q (2012) Salient region detection using local and global saliency. 21st Int Conf Pattern Recognit (ICPR) 210–213

  13. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev 3:201–215

    Article  Google Scholar 

  14. Fang Y, Lin W, Lee B-S et al (2012) Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. IEEE Trans Multimed 14(1):187–198

    Article  Google Scholar 

  15. Fine NJ (1949) On the Walsh functions. Trans Am Math Soc 65:372–414

    Article  MathSciNet  MATH  Google Scholar 

  16. Fine NJ (1950) The generalized Walsh functions. Trans Am Math Soc 69:66–77

    Article  MathSciNet  MATH  Google Scholar 

  17. Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive foundation: a survey. ACM Trans Appl Percept 7(1):1–46

    Article  Google Scholar 

  18. Gasparini F, Corchs S, Schettini R (2007) Low quality image enhancement using visual attention. Opt Eng 46(4):40502–040504

    Article  Google Scholar 

  19. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34:1915–1926

    Article  Google Scholar 

  20. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, Upper Saddle River

    Google Scholar 

  21. Graefe R, Efenberger W (1996) A novel approach for the detection of vehicles on freeways by real time vision. In Intelligent Vehicles 363–368

  22. Guo CL, Ma Q, Zhang LM (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. IEEE Conf Comput Vis Pattern Recognit (CVPR) 1–8

  23. Guo CL, Zhang LM (2010) A novel multiresolution spatio temporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198

    Article  MathSciNet  Google Scholar 

  24. Hadamard J (1893) Resolution d’une question relative aux determinants. Bull Sci Math 17:240–246

    MATH  Google Scholar 

  25. Han J, Ngan KN, Li MJ, Zhang HJ (2006) Unsupervised extraction of visual attention objects in color images. IEEE Trans Circuit Syst Video Technol 16:141–145

    Article  Google Scholar 

  26. Hassan M, Osman I, Yahia M (2007) Walsh-hadamard transform for facial feature extraction in face recognition. Int J Comput Inf Sci Eng 1(5)

  27. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. IEEE Conf Comput Vis Pattern Recognit (CVPR) 1–8

  28. Itti L (2000) Models of bottom up and top down visual attention. Dissertation, California Institute of Technology, Pasadena

  29. Itti L (2005) Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Vis Cogn 12:1093–1123

    Article  Google Scholar 

  30. Itti L, Koch C, Niebur E (1998) A model of saliency based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  31. Jia C, Hou F, Duan L (2013) Visual saliency based on local and global features in the spatial domain. Int J Comput Sci 10(3):713–719

    Google Scholar 

  32. Kanan C, Cottrell G (2010) Robust classification of objects, faces, and flowers using natural image. IEEE Conf Comput Vis Pattern Recognit (CVPR) 2472–2479

  33. Karssemeijer N (2006) Detection of stellate distortions in mammograms. IEEE Trans Med Imaging 15:611–619

  34. Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010

    Article  Google Scholar 

  35. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. IEEE Conf Comput Vis Pattern Recognit 280–287

  36. Li Z, Itti L (2011) Saliency and gist features for target detection in satellite images. IEEE Trans Image Process 20:2017–2029

    Article  MathSciNet  Google Scholar 

  37. Liu T, Yuan Z, Sun-Wang J, Zheng N, Tang X, Shum HY (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33:353–366

    Article  Google Scholar 

  38. Ma Y, Hua X, Lu L, Zhang H (2005) A generic framework of user attention model and its application in video summarization. IEEE Trans Multimed 7(5):907–919

    Article  Google Scholar 

  39. Pratt WK, Kane J, Andrews JC (1969) Hadamard transform image coding. Proc IEEE 57(1):58–68

    Article  Google Scholar 

  40. Rother C, Bordeaux L, Hamadi Y, Blake A (2006) Autocollage. ACM Trans Graph 25:847–852

    Article  Google Scholar 

  41. Santella A, Agrawala M, Decarlo D, Salesin D, Cohen M (2006) Gaze based interaction for semi-automatic photo cropping. SIGCHI Conf Hum Factors Comput Syst 771–780

  42. Scott E (1999) Computer vision and image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  43. Seberry J, Wysocki BJ, Wysocki TA (2005) On some applications of Hadamard matrices. Metrika 62:221–239

    Article  MathSciNet  MATH  Google Scholar 

  44. Walsh JL (1923) A closed set of orthogonal functions. Am J Math 55:5–24

    Article  MathSciNet  MATH  Google Scholar 

  45. Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Netw 19:1395–1407

    Article  MATH  Google Scholar 

  46. Yu Y, Wang B, Zhan LM (2009) Pulse discrete cosine transform for saliency-based visual attention. The 8th Int Conf Dev Learn (ICDL) 1–6

  47. Zhang W, Wu QMJ, Wang G, Yin H (2010) An adaptive computational model for salient object detection. IEEE Trans Multimed 12:300–315

    Article  Google Scholar 

Download references

Acknowledgments

The first author expresses her gratitude to the University Grant Commission (UGC), India for the obtained financial support in performing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinki Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, R., Singh, N. & Agrawal, R.K. A novel hybrid approach for salient object detection using local and global saliency in frequency domain. Multimed Tools Appl 75, 8267–8287 (2016). https://doi.org/10.1007/s11042-015-2750-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2750-y

Keywords

Navigation