Skip to main content
Log in

Robust visual tracking via bag of superpixels

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The Bag of Words (BoW) model is one of the most popular and effective image representation methods and has been drawn increasing interest in computer vision filed. However, little attention is paid on it in visual tracking. In this paper, a visual tracking method based on Bag of Superpixels (BoS) is proposed. In BoS, the training samples are oversegmented to generate enough superpixel patches. Then K-means algorithm is performed on the collected patches to form visual words of the target and a superpixel codebook is constructed. Finally the tracking is accomplished via searching for the highest likelihood between candidates and codebooks within Bayesian inference framework. In this process, an effective updating scheme is adopted to help our tracker resist occlusions and deformations. Experimental results demonstrate that the proposed method outperforms several state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34 (11):2274–2282

    Article  Google Scholar 

  2. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 798–805

  3. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Bay H, Ess A, Tuytelaars T et al (2008) Speeded-up robust features (SURF). Comput Vis Image Und 110(3):346–359

    Article  Google Scholar 

  5. Bolovinou A, Pratikakis I, Perantonis S (2013) Bag of spatio-visual words for context inference in scene classification. Pattern Recogn 46(3):1039–1053

    Article  Google Scholar 

  6. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40 (1):200–210

    Article  Google Scholar 

  7. Dance C, Willamowski J, Fan L et al (2004) Visual categorization with bags of keypoints. In: European conference on computer vision workshop on statistical learning in computer vision (ECCVW), pp 59–74

  8. David GL (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  9. Everingham M, Gool LV, Williams CKI et al (2010) The PASCAL visual object classes challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  10. Fan H, Xiang JH, Xu J et al (2014) Part-based visual tracking via online weighted P-N learning. Sci World J 2014:13

    Google Scholar 

  11. Fan H, Xiang JH, Liao HH et al (2015) Robust tracking based on local structural cell graph. J Vis Commun Image R 31:54–63

    Article  Google Scholar 

  12. Fergus R, Li F-F, Perona P et al (2005) Learning object categories from Google’s image search. In: IEEE international conference on computer vision (ICCV), pp 1816–1823

  13. Iosifidis A, Tefas A, Pitas I (2014) Discriminant bag of words based representation for human action recognition. Pattern Recogn Lett 49(1):224–230

    Google Scholar 

  14. Joachims T (1998) Text categorization with suport vector machines: learning with many relevant features. In: European conference on machine learning (ECML), pp 137–142

  15. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  16. Li F-F, Perona P (2005) A Bayesian hierarchical model for learning natural scene categories. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 524–531

  17. Li X, Hu W, Shen C et al (2013) A survey of appearance models in visual object tracking. ACM Trans Intel Syst Tec 4(4):2411–2418

    Google Scholar 

  18. Mei X, Ling HB (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  19. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  20. Ross D, Lim J, Lin RS et al (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  21. Sivic J, Zisserman A (2003) Video google: A text retrieval approach to object matching in videos. In: IEEE international conference on computer vision (ICCV), pp 1470–1477

  22. Sivic J, Russell BC, Efros AA et al (2005) Discovering objects and their location in images. In: IEEE international conference on computer vision (ICCV), pp 370–377

  23. Tsagkatakis G, Savakis A (2011) Online distance metric learning for object tracking. IEEE Trans Circ Syst Vid 21(12):1810–1821

    Article  Google Scholar 

  24. Wang F, Yu S, Yang J (2008) A novel fragments-based tracking algorithm using mean shift. In: International conference on control, automation, robotics and vision (ICARCV), pp 694–698

  25. Wang XG, Feng B, Bai X et al (2014) Bag of contour fragments for robust shape classification. Pattern Recogn 47(6):2116–2125

  26. Yang F, Lu HC, Zhang WL et al (2012) Visual tracking via bag of features. IET Image Process 6(2):115–128

    Article  MathSciNet  Google Scholar 

  27. Yang F, Lu HC, Yang M-H (2014) Robust superpixel tracking. IEEE Trans Image Process 23(4):1639–1651

    Article  MathSciNet  Google Scholar 

  28. Zhang KH, Song H (2013) Real-time tracking via online weighted multiple instance learning. Pattern Recogn 46:397–411

    Article  MATH  Google Scholar 

  29. Zhang KH, Zhang L, Yang M-H (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

Download references

Acknowledgment

Jinhai Xiang is supported by the Fundamental Research Funds for the Central Universities (Program No.2014BQ083). Liang Zhao is supported by the Fundamental Research Funds for Central Universities (Program No.2014QC008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Xiang, J. & Zhao, L. Robust visual tracking via bag of superpixels. Multimed Tools Appl 75, 8781–8798 (2016). https://doi.org/10.1007/s11042-015-2790-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2790-3

Keywords

Navigation